5 64

Cited 0 times in

Cited 0 times in

Deep learning-based respiratory muscle segmentation as a potential imaging biomarker for respiratory function assessment

Authors
 Insung Choi  ;  Juwhan Choi  ;  Hwan Seok Yong  ;  Zepa Yang 
Citation
 PLOS ONE, Vol.19(7) : e0306789, 2024-07 
Journal Title
PLOS ONE
Issue Date
2024-07
MeSH
Adult ; Aged ; Biomarkers ; Deep Learning* ; Female ; Humans ; Image Processing, Computer-Assisted / methods ; Male ; Middle Aged ; Respiratory Function Tests* ; Respiratory Muscles* / diagnostic imaging ; Respiratory Muscles* / physiology ; Tomography, X-Ray Computed* / methods
Abstract
Respiratory diseases significantly affect respiratory function, making them a considerable contributor to global mortality. The respiratory muscles play an important role in disease prognosis; as such, quantitative analysis of the respiratory muscles is crucial to assess the status of the respiratory system and the quality of life in patients. In this study, we aimed to develop an automated approach for the segmentation and classification of three types of respiratory muscles from computed tomography (CT) images using artificial intelligence. With a dataset of approximately 600,000 thoracic CT images from 3,200 individuals, we trained the model using the Attention U-Net architecture, optimized for detailed and focused segmentation. Subsequently, we calculated the volumes and densities from the muscle masks segmented by our model and performed correlation analysis with pulmonary function test (PFT) parameters. The segmentation models for muscle tissue and respiratory muscles obtained dice scores of 0.9823 and 0.9688, respectively. The classification model, achieving a generalized dice score of 0.9900, also demonstrated high accuracy in classifying thoracic region muscle types, as evidenced by its F1 scores: 0.9793 for the pectoralis muscle, 0.9975 for the erector spinae muscle, and 0.9839 for the intercostal muscle. In the correlation analysis, the volume of the respiratory muscles showed a strong correlation with PFT parameters, suggesting that respiratory muscle volume may serve as a potential novel biomarker for respiratory function. Although muscle density showed a weaker correlation with the PFT parameters, it has a potential significance in medical research.
Files in This Item:
T992025500.pdf Download
DOI
10.1371/journal.pone.0306789
Appears in Collections:
1. College of Medicine (의과대학) > Others (기타) > 1. Journal Papers
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/206456
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links