4 434

Cited 0 times in

Cited 0 times in

Enhancing Radiomics Reproducibility: Deep Learning-Based Harmonization of Abdominal Computed Tomography (CT) Images

Authors
 Seul Bi Lee  ;  Youngtaek Hong  ;  Yeon Jin Cho  ;  Dawun Jeong  ;  Jina Lee  ;  Jae Won Choi  ;  Jae Yeon Hwang  ;  Seunghyun Lee  ;  Young Hun Choi  ;  Jung-Eun Cheon 
Citation
 Bioengineering, Vol.11(12) : 1212, 2024-12 
Journal Title
Bioengineering
Issue Date
2024-12
Keywords
CT acquisition ; artificial intelligence ; quality control ; radiomics ; reproducibility
Abstract
We assessed the feasibility of using deep learning-based image harmonization to improve the reproducibility of radiomics features in abdominal CT scans. In CT imaging, harmonization adjusts images from different institutions to ensure consistency despite variations in scanners and acquisition protocols. This process is essential because such differences can lead to variability in radiomics features, affecting reproducibility and accuracy. Harmonizing images minimizes these inconsistencies, supporting more reliable and clinically applicable results across diverse settings. A pre-trained harmonization algorithm was applied to 63 dual-energy abdominal CT images, which were reconstructed into four different types, and 10 regions of interest (ROIs) were analyzed. From the original 455 radiomics features per ROI, 387 were used after excluding redundant features. Reproducibility was measured using the intraclass correlation coefficient (ICC), with a threshold of ICC ≥ 0.85 indicating acceptable reproducibility. The region-based analysis revealed significant improvements in reproducibility post-harmonization, especially in vessel features, which increased from 14% to 69%. Other regions, including the spleen, kidney, muscle, and liver parenchyma, also saw notable improvements, although air reproducibility slightly decreased from 95% to 94%, impacting only a few features. In patient-based analysis, reproducible features increased from 18% to 65%, with an average of 179 additional reproducible features per patient after harmonization. These results demonstrate that deep learning-based harmonization can significantly enhance the reproducibility of radiomics features in abdominal CT, offering promising potential for advancing radiomics development and its clinical applications.
Files in This Item:
T992025358.pdf Download
DOI
10.3390/bioengineering11121212
Appears in Collections:
1. College of Medicine (의과대학) > Yonsei Biomedical Research Center (연세의생명연구원) > 1. Journal Papers
Yonsei Authors
Hong, Youngtaek(홍영택)
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/206314
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links