Cited 0 times in
Interpretable multimodal transformer for prediction of molecular subtypes and grades in adult-type diffuse gliomas
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 김세훈 | - |
dc.contributor.author | 박예원 | - |
dc.contributor.author | 안성수 | - |
dc.contributor.author | 이승구 | - |
dc.contributor.author | 장종희 | - |
dc.contributor.author | 한경화 | - |
dc.date.accessioned | 2025-05-02T00:27:27Z | - |
dc.date.available | 2025-05-02T00:27:27Z | - |
dc.date.issued | 2025-03 | - |
dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/205390 | - |
dc.description.abstract | Molecular subtyping and grading of adult-type diffuse gliomas are essential for treatment decisions and patient prognosis. We introduce GlioMT, an interpretable multimodal transformer that integrates imaging and clinical data to predict the molecular subtype and grade of adult-type diffuse gliomas according to the 2021 WHO classification. GlioMT is trained on multiparametric MRI data from an institutional set of 1053 patients with adult-type diffuse gliomas to predict the IDH mutation status, 1p/19q codeletion status, and tumor grade. External validation on the TCGA (200 patients) and UCSF (477 patients) shows that GlioMT outperforms conventional CNNs and visual transformers, achieving AUCs of 0.915 (TCGA) and 0.981 (UCSF) for IDH mutation, 0.854 (TCGA) and 0.806 (UCSF) for 1p/19q codeletion, and 0.862 (TCGA) and 0.960 (UCSF) for grade prediction. GlioMT enhances the reliability of clinical decision-making by offering interpretability through attention maps and contributions of imaging and clinical data. | - |
dc.description.statementOfResponsibility | open | - |
dc.language | English | - |
dc.publisher | Nature Publishing Group | - |
dc.relation.isPartOf | NPJ DIGITAL MEDICINE(Nature partner journals digital medicine Digital medicine) | - |
dc.rights | CC BY-NC-ND 2.0 KR | - |
dc.title | Interpretable multimodal transformer for prediction of molecular subtypes and grades in adult-type diffuse gliomas | - |
dc.type | Article | - |
dc.contributor.college | College of Medicine (의과대학) | - |
dc.contributor.department | Dept. of Pathology (병리학교실) | - |
dc.contributor.googleauthor | Yunsu Byeon | - |
dc.contributor.googleauthor | Yae Won Park | - |
dc.contributor.googleauthor | Soohyun Lee | - |
dc.contributor.googleauthor | Doohyun Park | - |
dc.contributor.googleauthor | HyungSeob Shin | - |
dc.contributor.googleauthor | Kyunghwa Han | - |
dc.contributor.googleauthor | Jong Hee Chang | - |
dc.contributor.googleauthor | Se Hoon Kim | - |
dc.contributor.googleauthor | Seung-Koo Lee | - |
dc.contributor.googleauthor | Sung Soo Ahn | - |
dc.contributor.googleauthor | Dosik Hwang | - |
dc.identifier.doi | 10.1038/s41746-025-01530-4 | - |
dc.contributor.localId | A00610 | - |
dc.contributor.localId | A05330 | - |
dc.contributor.localId | A02234 | - |
dc.contributor.localId | A02912 | - |
dc.contributor.localId | A03470 | - |
dc.contributor.localId | A04267 | - |
dc.relation.journalcode | J03796 | - |
dc.identifier.eissn | 2398-6352 | - |
dc.identifier.pmid | 40044878 | - |
dc.contributor.alternativeName | Kim, Se Hoon | - |
dc.contributor.affiliatedAuthor | 김세훈 | - |
dc.contributor.affiliatedAuthor | 박예원 | - |
dc.contributor.affiliatedAuthor | 안성수 | - |
dc.contributor.affiliatedAuthor | 이승구 | - |
dc.contributor.affiliatedAuthor | 장종희 | - |
dc.contributor.affiliatedAuthor | 한경화 | - |
dc.citation.volume | 8 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 140 | - |
dc.identifier.bibliographicCitation | NPJ DIGITAL MEDICINE, Vol.8(1) : 140, 2025-03 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.