Cited 1 times in

Comprehensive Assessment and Early Prediction of Gross Motor Performance in Toddlers With Graph Convolutional Networks-Based Deep Learning: Development and Validation Study

Authors
 Sulim Chun  ;  Sooyoung Jang  ;  Jin Yong Kim  ;  Chanyoung Ko  ;  JooHyun Lee  ;  JaeSeong Hong  ;  Yu Rang Park 
Citation
 JMIR FORMATIVE RESEARCH, Vol.8 : e51996, 2024-02 
Journal Title
JMIR FORMATIVE RESEARCH
Issue Date
2024-02
Keywords
GCN ; algorithm ; algorithms ; artificial intelligence ; child ; child development ; children ; convolutional network ; development ; developmental ; digital health ; graph convolutional networks ; gross ; kinesiology ; limb ; limbs ; machine learning ; motor ; movement ; paediatric ; paediatrics ; pediatric ; pediatrics ; toddler ; toddlers
Abstract
Background: Accurate and timely assessment of children's developmental status is crucial for early diagnosis and intervention. More accurate and automated developmental assessments are essential due to the lack of trained health care providers and imprecise parental reporting. In various areas of development, gross motor development in toddlers is known to be predictive of subsequent childhood developments.

Objective: The purpose of this study was to develop a model to assess gross motor behavior and integrate the results to determine the overall gross motor status of toddlers. This study also aimed to identify behaviors that are important in the assessment of overall gross motor skills and detect critical moments and important body parts for the assessment of each behavior.

Methods: We used behavioral videos of toddlers aged 18-35 months. To assess gross motor development, we selected 4 behaviors (climb up the stairs, go down the stairs, throw the ball, and stand on 1 foot) that have been validated with the Korean Developmental Screening Test for Infants and Children. In the child behavior videos, we estimated each child's position as a bounding box and extracted human keypoints within the box. In the first stage, the videos with the extracted human keypoints of each behavior were evaluated separately using a graph convolutional networks (GCN)-based algorithm. The probability values obtained for each label in the first-stage model were used as input for the second-stage model, the extreme gradient boosting (XGBoost) algorithm, to predict the overall gross motor status. For interpretability, we used gradient-weighted class activation mapping (Grad-CAM) to identify important moments and relevant body parts during the movements. The Shapley additive explanations method was used for the assessment of variable importance, to determine the movements that contributed the most to the overall developmental assessment.

Results: Behavioral videos of 4 gross motor skills were collected from 147 children, resulting in a total of 2395 videos. The stage-1 GCN model to evaluate each behavior had an area under the receiver operating characteristic curve (AUROC) of 0.79 to 0.90. Keypoint-mapping Grad-CAM visualization identified important moments in each behavior and differences in important body parts. The stage-2 XGBoost model to assess the overall gross motor status had an AUROC of 0.90. Among the 4 behaviors, "go down the stairs" contributed the most to the overall developmental assessment.

Conclusions: Using movement videos of toddlers aged 18-35 months, we developed objective and automated models to evaluate each behavior and assess each child's overall gross motor performance. We identified the important behaviors for assessing gross motor performance and developed methods to recognize important moments and body parts while evaluating gross motor performance.
Files in This Item:
T992024309.pdf Download
DOI
10.2196/51996
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Biomedical Systems Informatics (의생명시스템정보학교실) > 1. Journal Papers
Yonsei Authors
Park, Yu Rang(박유랑) ORCID logo https://orcid.org/0000-0002-4210-2094
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/202009
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links