Cited 0 times in

Histopathologic image-based deep learning classifier for predicting platinum-based treatment responses in high-grade serous ovarian cancer

Authors
 Byungsoo Ahn  ;  Damin Moon  ;  Hyun-Soo Kim  ;  Chung Lee  ;  Nam Hoon Cho  ;  Heung-Kook Choi  ;  Dongmin Kim  ;  Jung-Yun Lee  ;  Eun Ji Nam  ;  Dongju Won  ;  Hee Jung An  ;  Sun Young Kwon  ;  Su-Jin Shin  ;  Hye Ra Jung  ;  Dohee Kwon  ;  Heejung Park  ;  Milim Kim  ;  Yoon Jin Cha  ;  Hyunjin Park  ;  Yangkyu Lee  ;  Songmi Noh  ;  Yong-Moon Lee  ;  Sung-Eun Choi  ;  Ji Min Kim  ;  Sun Hee Sung  ;  Eunhyang Park 
Citation
 NATURE COMMUNICATIONS, Vol.15(1) : 4253, 2024-05 
Journal Title
NATURE COMMUNICATIONS
Issue Date
2024-05
MeSH
Adult ; Aged ; Biomarkers, Tumor / genetics ; Biomarkers, Tumor / metabolism ; Cohort Studies ; Cystadenocarcinoma, Serous* / diagnostic imaging ; Cystadenocarcinoma, Serous* / drug therapy ; Cystadenocarcinoma, Serous* / genetics ; Cystadenocarcinoma, Serous* / pathology ; Deep Learning* ; Female ; Humans ; Middle Aged ; Neoplasm Grading ; Ovarian Neoplasms* / diagnostic imaging ; Ovarian Neoplasms* / drug therapy ; Ovarian Neoplasms* / genetics ; Ovarian Neoplasms* / pathology ; Platinum* / therapeutic use ; Reproducibility of Results ; Treatment Outcome
Abstract
Platinum-based chemotherapy is the cornerstone treatment for female high-grade serous ovarian carcinoma (HGSOC), but choosing an appropriate treatment for patients hinges on their responsiveness to it. Currently, no available biomarkers can promptly predict responses to platinum-based treatment. Therefore, we developed the Pathologic Risk Classifier for HGSOC (PathoRiCH), a histopathologic image-based classifier. PathoRiCH was trained on an in-house cohort (n = 394) and validated on two independent external cohorts (n = 284 and n = 136). The PathoRiCH-predicted favorable and poor response groups show significantly different platinum-free intervals in all three cohorts. Combining PathoRiCH with molecular biomarkers provides an even more powerful tool for the risk stratification of patients. The decisions of PathoRiCH are explained through visualization and a transcriptomic analysis, which bolster the reliability of our model's decisions. PathoRiCH exhibits better predictive performance than current molecular biomarkers. PathoRiCH will provide a solid foundation for developing an innovative tool to transform the current diagnostic pipeline for HGSOC.,Predicting the response to platinum-based chemotherapy in high-grade serous ovarian carcinoma (HGSOC) remains challenging. Here, the authors develop the histopathology image-based Pathologic Risk Classifier for HGSOC - PathoRiCH - to predict and stratify HGSOC patient response to therapy, especially when combined with molecular biomarkers.,
Files in This Item:
T202406761.pdf Download
DOI
10.1038/s41467-024-48667-6
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Laboratory Medicine (진단검사의학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Obstetrics and Gynecology (산부인과학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Pathology (병리학교실) > 1. Journal Papers
Yonsei Authors
Kim, Milim(김미림)
Nam, Eun Ji(남은지) ORCID logo https://orcid.org/0000-0003-0189-3560
Park, Eunhyang(박은향) ORCID logo https://orcid.org/0000-0003-2658-5054
Park, Hyunjin(박현진)
Park, Heejung(박희정)
Shin, Su Jin(신수진) ORCID logo https://orcid.org/0000-0001-9114-8438
Won, Dongju(원동주) ORCID logo https://orcid.org/0000-0002-0084-0216
Lee, Yangkyu(이양규)
Lee, Jung-Yun(이정윤) ORCID logo https://orcid.org/0000-0001-7948-1350
Lee, Chung(이청) ORCID logo https://orcid.org/0000-0003-0855-4553
Cho, Nam Hoon(조남훈) ORCID logo https://orcid.org/0000-0002-0045-6441
Cha, Yoon Jin(차윤진) ORCID logo https://orcid.org/0000-0002-5967-4064
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/201222
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links