Cited 8 times in

Histopathologic image-based deep learning classifier for predicting platinum-based treatment responses in high-grade serous ovarian cancer

DC Field Value Language
dc.contributor.author김미림-
dc.contributor.author남은지-
dc.contributor.author박은향-
dc.contributor.author박현진-
dc.contributor.author박희정-
dc.contributor.author신수진-
dc.contributor.author원동주-
dc.contributor.author이양규-
dc.contributor.author이정윤-
dc.contributor.author이청-
dc.contributor.author조남훈-
dc.contributor.author차윤진-
dc.date.accessioned2024-12-06T03:43:48Z-
dc.date.available2024-12-06T03:43:48Z-
dc.date.issued2024-05-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/201222-
dc.description.abstractPlatinum-based chemotherapy is the cornerstone treatment for female high-grade serous ovarian carcinoma (HGSOC), but choosing an appropriate treatment for patients hinges on their responsiveness to it. Currently, no available biomarkers can promptly predict responses to platinum-based treatment. Therefore, we developed the Pathologic Risk Classifier for HGSOC (PathoRiCH), a histopathologic image-based classifier. PathoRiCH was trained on an in-house cohort (n = 394) and validated on two independent external cohorts (n = 284 and n = 136). The PathoRiCH-predicted favorable and poor response groups show significantly different platinum-free intervals in all three cohorts. Combining PathoRiCH with molecular biomarkers provides an even more powerful tool for the risk stratification of patients. The decisions of PathoRiCH are explained through visualization and a transcriptomic analysis, which bolster the reliability of our model's decisions. PathoRiCH exhibits better predictive performance than current molecular biomarkers. PathoRiCH will provide a solid foundation for developing an innovative tool to transform the current diagnostic pipeline for HGSOC.,Predicting the response to platinum-based chemotherapy in high-grade serous ovarian carcinoma (HGSOC) remains challenging. Here, the authors develop the histopathology image-based Pathologic Risk Classifier for HGSOC - PathoRiCH - to predict and stratify HGSOC patient response to therapy, especially when combined with molecular biomarkers.,-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish-
dc.publisherNature Pub. Group-
dc.relation.isPartOfNATURE COMMUNICATIONS-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHAdult-
dc.subject.MESHAged-
dc.subject.MESHBiomarkers, Tumor / genetics-
dc.subject.MESHBiomarkers, Tumor / metabolism-
dc.subject.MESHCohort Studies-
dc.subject.MESHCystadenocarcinoma, Serous* / diagnostic imaging-
dc.subject.MESHCystadenocarcinoma, Serous* / drug therapy-
dc.subject.MESHCystadenocarcinoma, Serous* / genetics-
dc.subject.MESHCystadenocarcinoma, Serous* / pathology-
dc.subject.MESHDeep Learning*-
dc.subject.MESHFemale-
dc.subject.MESHHumans-
dc.subject.MESHMiddle Aged-
dc.subject.MESHNeoplasm Grading-
dc.subject.MESHOvarian Neoplasms* / diagnostic imaging-
dc.subject.MESHOvarian Neoplasms* / drug therapy-
dc.subject.MESHOvarian Neoplasms* / genetics-
dc.subject.MESHOvarian Neoplasms* / pathology-
dc.subject.MESHPlatinum* / therapeutic use-
dc.subject.MESHReproducibility of Results-
dc.subject.MESHTreatment Outcome-
dc.titleHistopathologic image-based deep learning classifier for predicting platinum-based treatment responses in high-grade serous ovarian cancer-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Pathology (병리학교실)-
dc.contributor.googleauthorByungsoo Ahn-
dc.contributor.googleauthorDamin Moon-
dc.contributor.googleauthorHyun-Soo Kim-
dc.contributor.googleauthorChung Lee-
dc.contributor.googleauthorNam Hoon Cho-
dc.contributor.googleauthorHeung-Kook Choi-
dc.contributor.googleauthorDongmin Kim-
dc.contributor.googleauthorJung-Yun Lee-
dc.contributor.googleauthorEun Ji Nam-
dc.contributor.googleauthorDongju Won-
dc.contributor.googleauthorHee Jung An-
dc.contributor.googleauthorSun Young Kwon-
dc.contributor.googleauthorSu-Jin Shin-
dc.contributor.googleauthorHye Ra Jung-
dc.contributor.googleauthorDohee Kwon-
dc.contributor.googleauthorHeejung Park-
dc.contributor.googleauthorMilim Kim-
dc.contributor.googleauthorYoon Jin Cha-
dc.contributor.googleauthorHyunjin Park-
dc.contributor.googleauthorYangkyu Lee-
dc.contributor.googleauthorSongmi Noh-
dc.contributor.googleauthorYong-Moon Lee-
dc.contributor.googleauthorSung-Eun Choi-
dc.contributor.googleauthorJi Min Kim-
dc.contributor.googleauthorSun Hee Sung-
dc.contributor.googleauthorEunhyang Park-
dc.identifier.doi10.1038/s41467-024-48667-6-
dc.contributor.localIdA06554-
dc.contributor.localIdA01262-
dc.contributor.localIdA05760-
dc.contributor.localIdA06075-
dc.contributor.localIdA06305-
dc.contributor.localIdA04596-
dc.contributor.localIdA05763-
dc.contributor.localIdA06080-
dc.contributor.localIdA04638-
dc.contributor.localIdA06477-
dc.contributor.localIdA03812-
dc.contributor.localIdA04001-
dc.relation.journalcodeJ02293-
dc.identifier.eissn2041-1723-
dc.identifier.pmid38762636-
dc.contributor.alternativeNameKim, Milim-
dc.contributor.affiliatedAuthor김미림-
dc.contributor.affiliatedAuthor남은지-
dc.contributor.affiliatedAuthor박은향-
dc.contributor.affiliatedAuthor박현진-
dc.contributor.affiliatedAuthor박희정-
dc.contributor.affiliatedAuthor신수진-
dc.contributor.affiliatedAuthor원동주-
dc.contributor.affiliatedAuthor이양규-
dc.contributor.affiliatedAuthor이정윤-
dc.contributor.affiliatedAuthor이청-
dc.contributor.affiliatedAuthor조남훈-
dc.contributor.affiliatedAuthor차윤진-
dc.citation.volume15-
dc.citation.number1-
dc.citation.startPage4253-
dc.identifier.bibliographicCitationNATURE COMMUNICATIONS, Vol.15(1) : 4253, 2024-05-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Laboratory Medicine (진단검사의학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Obstetrics and Gynecology (산부인과학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Pathology (병리학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.