15 41

Cited 0 times in

Antioxidant Efficacy of Hwangryunhaedok-tang through Nrf2 and AMPK Signaling Pathway against Neurological Disorders In Vivo and In Vitro

Authors
 Su-Jin Bae  ;  Won-Yung Lee  ;  Seon Been Bak  ;  Seung Jin Lee  ;  Su-Jin Hwang  ;  Geun-Woo Kim  ;  Byung-Soo Koo  ;  Sun-Dong Park  ;  Hye-Hyun Yoo  ;  Choon-Ok Kim  ;  Hyung Won Kang  ;  Tae-Woo Oh  ;  Young Woo Kim 
Citation
 INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, Vol.25(4) : 2313, 2024-02 
Journal Title
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
ISSN
 1661-6596 
Issue Date
2024-02
MeSH
AMP-Activated Protein Kinases / metabolism ; Alzheimer Disease* / drug therapy ; Amyloid beta-Peptides / metabolism ; Animals ; Antioxidants* / pharmacology ; Antioxidants* / therapeutic use ; Mice ; NF-E2-Related Factor 2 / metabolism ; Oxidative Stress ; Phosphatidylinositol 3-Kinases / metabolism ; Plant Extracts* / pharmacology ; Plant Extracts* / therapeutic use ; Proto-Oncogene Proteins c-akt / metabolism ; Signal Transduction
Keywords
AMPK ; Alzheimer’s disease ; Hwangryunhaedok-tang ; Nrf2 ; baicalein
Abstract
Alzheimer's disease (AD) is a representative cause of dementia and is caused by neuronal loss, leading to the accumulation of aberrant neuritic plaques and the formation of neurofibrillary tangles. Oxidative stress is involved in the impaired clearance of amyloid beta (Aβ), and Aβ-induced oxidative stress causes AD by inducing the formation of neurofibrillary tangles. Hwangryunhaedok-tang (HHT, Kracie K-09®), a traditional herbal medicine prescription, has shown therapeutic effects on various diseases. However, the studies of HHT as a potential treatment for AD are insufficient. Therefore, our study identified the neurological effects and mechanisms of HHT and its key bioactive compounds against Alzheimer's disease in vivo and in vitro. In a 5xFAD mouse model, our study confirmed that HHT attenuated cognitive impairments in the Morris water maze (MWM) test and passive avoidance (PA) test. In addition, the prevention of neuron impairment, reduction in the protein levels of Aβ, and inhibition of cell apoptosis were confirmed with brain tissue staining. In HT-22 cells, HHT attenuates tBHP-induced cytotoxicity, ROS generation, and mitochondrial dysfunction. It was verified that HHT exerts a neuroprotective effect by activating signaling pathways interacting with Nrf2, such as MAPK/ERK, PI3K/Akt, and LKB1/AMPK. Among the components, baicalein, a bioavailable compound of HHT, exhibited neuroprotective properties and activated the Akt, AMPK, and Nrf2/HO-1 pathways. Our findings indicate a mechanism for HHT and its major bioavailable compounds to treat and prevent AD and suggest its potential.
Files in This Item:
T202402689.pdf Download
DOI
10.3390/ijms25042313
Appears in Collections:
6. Others (기타) > Dept. of Clinical Pharmacology (임상시험센터) > 1. Journal Papers
Yonsei Authors
Kim, Choon Ok(김춘옥) ORCID logo https://orcid.org/0000-0002-2319-1108
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/199190
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links