84 151

Cited 5 times in

Functional Characterization of Pharmcogenetic Variants of Human Cytochrome P450 2C9 in Korean Populations

Authors
 Myung-A Cho  ;  Jihoon G Yoon  ;  Vitchan Kim  ;  Harim Kim  ;  Rowoon Lee  ;  Min Goo Lee  ;  Donghak Kim 
Citation
 BIOMOLECULES & THERAPEUTICS, Vol.27(6) : 577-583, 2019-11 
Journal Title
BIOMOLECULES & THERAPEUTICS
ISSN
 1976-9148 
Issue Date
2019-11
Keywords
Cytochrome P450 ; Diclofenac ; P450 2C9 ; Pharmacogenetics ; Polymorphism
Abstract
Human cytochrome P450 2C9 is a highly polymorphic enzyme that is required for drug and xenobiotic metabolism. Here, we studied eleven P450 2C9 genetic variants-including three novel variants F69S, L310V, and Q324X-that were clinically identified in Korean patients. P450 2C9 variant enzymes were expressed in Escherichia coli and their bicistronic membrane fractions were prepared The CO-binding spectra were obtained for nine enzyme variants, indicating P450 holoenzymes, but not for the M02 (L90P) variant. The M11 (Q324X) variant could not be expressed due to an early nonsense mutation. LC-MS/MS analysis was performed to measure the catalytic activities of the P450 2C9 variants, using diclofenac as a substrate. Steady-state kinetic analysis revealed that the catalytic efficiency of all nine P450 2C9 variants was lower than that of the wild type P450 2C9 enzyme. The M05 (R150L) and M06 (P279T) variants showed high kcat values; however, their Km values were also high. As the M01 (F69S), M03 (R124Q), M04 (R125H), M08 (I359L), M09 (I359T), and M10 (A477T) variants exhibited higher Km and lower kcat values than that of the wild type enzyme, their catalytic efficiency decreased by approximately 50-fold compared to the wild type enzyme. Furthermore, the novel variant M07 (L310V) showed lower kcat and Km values than the wild type enzyme, which resulted in its decreased (80%) catalytic efficiency. The X-ray crystal structure of P450 2C9 revealed the presence of mutations in the residues surrounding the substrate-binding cavity. Functional characterization of these genetic variants can help understand the pharmacogenetic outcomes.
Files in This Item:
T992024001.pdf Download
DOI
10.4062/biomolther.2019.112
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Laboratory Medicine (진단검사의학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Pharmacology (약리학교실) > 1. Journal Papers
Yonsei Authors
Yoon, Jihoon G.(윤지훈) ORCID logo https://orcid.org/0000-0002-4401-7803
Lee, Min Goo(이민구) ORCID logo https://orcid.org/0000-0001-7436-012X
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/198861
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links