Cited 27 times in

Large Language Models: A Guide for Radiologists

DC Field Value Language
dc.contributor.author김승섭-
dc.contributor.author이충근-
dc.date.accessioned2024-03-22T06:49:17Z-
dc.date.available2024-03-22T06:49:17Z-
dc.date.issued2024-02-
dc.identifier.issn1229-6929-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/198628-
dc.description.abstractLarge language models (LLMs) have revolutionized the global landscape of technology beyond natural language processing. Owing to their extensive pre-training on vast datasets, contemporary LLMs can handle tasks ranging from general functionalities to domain-specific areas, such as radiology, without additional fine-tuning. General-purpose chatbots based on LLMs can optimize the efficiency of radiologists in terms of their professional work and research endeavors. Importantly, these LLMs are on a trajectory of rapid evolution, wherein challenges such as “hallucination,” high training cost, and efficiency issues are addressed, along with the inclusion of multimodal inputs. In this review, we aim to offer conceptual knowledge and actionable guidance to radiologists interested in utilizing LLMs through a succinct overview of the topic and a summary of radiology-specific aspects, from the beginning to potential future directions.-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish-
dc.publisherKorean Society of Radiology-
dc.relation.isPartOfKOREAN JOURNAL OF RADIOLOGY-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHHumans-
dc.subject.MESHRadiologists*-
dc.subject.MESHRadiology*-
dc.titleLarge Language Models: A Guide for Radiologists-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Radiology (영상의학교실)-
dc.contributor.googleauthorSunkyu Kim-
dc.contributor.googleauthorChoong-Kun Lee-
dc.contributor.googleauthorSeung-Seob Kim-
dc.identifier.doi10.3348/kjr.2023.0997-
dc.contributor.localIdA05097-
dc.contributor.localIdA03259-
dc.relation.journalcodeJ02884-
dc.identifier.eissn2005-8330-
dc.identifier.pmid38288895-
dc.subject.keywordChatGPT-
dc.subject.keywordChatbot-
dc.subject.keywordLarge language model-
dc.subject.keywordNatural language processing-
dc.subject.keywordRadiology-
dc.subject.keywordTransformer-
dc.contributor.alternativeNameKim, Seung-seob-
dc.contributor.affiliatedAuthor김승섭-
dc.contributor.affiliatedAuthor이충근-
dc.citation.volume25-
dc.citation.number2-
dc.citation.startPage126-
dc.citation.endPage133-
dc.identifier.bibliographicCitationKOREAN JOURNAL OF RADIOLOGY, Vol.25(2) : 126-133, 2024-02-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.