74 229

Cited 0 times in

Soluble receptors for advanced glycation end-products prevent unilateral ureteral obstruction-induced renal fibrosis

Authors
 Chan Ho Kim  ;  Hye-Young Kang  ;  Gyuri Kim  ;  Jimin Park  ;  Bo Young Nam  ;  Jung Tak Park  ;  Seung Hyeok Han  ;  Shin-Wook Kang  ;  Tae-Hyun Yoo 
Citation
 FRONTIERS IN PHARMACOLOGY, Vol.14 : 1172269, 2023-05 
Journal Title
FRONTIERS IN PHARMACOLOGY
Issue Date
2023-05
Keywords
chronic kidney disease ; receptor for advanced glycation end-products (RAGE) ; renal fibrosis ; soluble RAGE ; unilateral ureteral obstruction
Abstract
Introduction: The receptor for advanced glycation end products (RAGE) and its ligands, such as high-mobility group protein box 1 (HMGB1), play an important role in the accumulation of extracellular matrix in chronic kidney diseases with tubulointerstitial fibrosis. Blocking RAGE signaling with soluble RAGE (sRAGE) is a therapeutic candidate for renal fibrosis. Methods: NRK-52E cells were stimulated with or without HMGB1 and incubated with sRAGE in vitro. Sprague-Dawley rats were intraperitoneally treated with sRAGE after unilateral ureteral obstruction (UUO) operation in vivo. Results: HMBG1-stimulated NRK-52E cells showed increased fibronectin expression, type I collagen, α-smooth muscle actin, and connective tissue growth factor, which were attenuated by sRAGE. The mitogen-activated protein kinase (MAPK) pathway and nuclear translocation of nuclear factor kappa B (NF-κB) were enhanced in NRK-52E cells exposed to HMBG1, and sRAGE treatment alleviated the activation of the MAPK and NF-κB pathways. In the UUO rat models, sRAGE significantly ameliorated the increased renal fibronectin, type I collagen, and α-smooth muscle actin expressions. Masson's trichrome staining confirmed the anti-fibrotic effect of sRAGE in the UUO rat model. RAGE also significantly attenuated the activation of the MAPK pathway and NF-κB, as well as the increased number of infiltrated macrophages within the tubulointerstitium in the kidney of the UUO rat models. Conclusion: These findings suggest that RAGE plays a pivotal role in the pathogenesis of renal fibrosis and that its inhibition by sRAGE may be a potential therapeutic approach for renal fibrosis.
Files in This Item:
T202303082.pdf Download
DOI
10.3389/fphar.2023.1172269
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers
Yonsei Authors
Kang, Shin Wook(강신욱) ORCID logo https://orcid.org/0000-0002-5677-4756
Park, Jung Tak(박정탁) ORCID logo https://orcid.org/0000-0002-2325-8982
Yoo, Tae Hyun(유태현) ORCID logo https://orcid.org/0000-0002-9183-4507
Han, Seung Hyeok(한승혁) ORCID logo https://orcid.org/0000-0001-7923-5635
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/195394
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links