Cited 9 times in

Radiomics and Deep Learning in Brain Metastases: Current Trends and Roadmap to Future Applications

DC Field Value Language
dc.contributor.author박예원-
dc.contributor.author안성수-
dc.contributor.author이승구-
dc.contributor.author장종희-
dc.date.accessioned2022-09-14T01:55:13Z-
dc.date.available2022-09-14T01:55:13Z-
dc.date.issued2021-12-
dc.identifier.issn2384-1095-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/190669-
dc.description.abstractAdvances in radiomics and deep learning (DL) hold great potential to be at the forefront of precision medicine for the treatment of patients with brain metastases. Radiomics and DL can aid clinical decision-making by enabling accurate diagnosis, facilitating the identification of molecular markers, providing accurate prognoses, and monitoring treatment response. In this review, we summarize the clinical background, unmet needs, and current state of research of radiomics and DL for the treatment of brain metastases. The promises, pitfalls, and future roadmap of radiomics and DL in brain metastases are addressed as well.-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish-
dc.publisherKorean Society of Magnetic Resonance in Medicine-
dc.relation.isPartOfInvestigative Magnetic Resonance Imaging-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleRadiomics and Deep Learning in Brain Metastases: Current Trends and Roadmap to Future Applications-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Radiology (영상의학교실)-
dc.contributor.googleauthorYae Won Park-
dc.contributor.googleauthorNarae Lee-
dc.contributor.googleauthorSung Soo Ahn-
dc.contributor.googleauthorJong Hee Chang-
dc.contributor.googleauthorSeung-Koo Lee-
dc.identifier.doi10.13104/imri.2021.25.4.266-
dc.contributor.localIdA05330-
dc.contributor.localIdA02234-
dc.contributor.localIdA02912-
dc.contributor.localIdA03470-
dc.relation.journalcodeJ01186-
dc.identifier.eissn2384-1109-
dc.subject.keywordArtificial intelligence-
dc.subject.keywordBrain metastases-
dc.subject.keywordDeep learning-
dc.subject.keywordMachine learning-
dc.subject.keywordRadiomics-
dc.contributor.alternativeNamePark, Yae-Won-
dc.contributor.affiliatedAuthor박예원-
dc.contributor.affiliatedAuthor안성수-
dc.contributor.affiliatedAuthor이승구-
dc.contributor.affiliatedAuthor장종희-
dc.citation.volume25-
dc.citation.number4-
dc.citation.startPage266-
dc.citation.endPage280-
dc.identifier.bibliographicCitationInvestigative Magnetic Resonance Imaging, Vol.25(4) : 266-280, 2021-12-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Neurosurgery (신경외과학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.