0 77

Cited 0 times in

Fat-saturated image generation from multi-contrast MRIs using generative adversarial networks with Bloch equation-based autoencoder regularization

DC Field Value Language
dc.contributor.author김성준-
dc.date.accessioned2021-10-21T00:05:30Z-
dc.date.available2021-10-21T00:05:30Z-
dc.date.issued2021-10-
dc.identifier.issn1361-8415-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/185372-
dc.description.abstractObtaining multiple series of magnetic resonance (MR) images with different contrasts is useful for accurate diagnosis of human spinal conditions. However, this can be time consuming and a burden on both the patient and the hospital. We propose a Bloch equation-based autoencoder regularization generative adversarial network (BlochGAN) to generate a fat saturation T2-weighted (T2 FS) image from T1-weighted (T1-w) and T2-weighted (T2-w) images of human spine. To achieve this, our approach was to utilize the relationship between the contrasts using Bloch equation since it is a fundamental principle of MR physics and serves as a physical basis of each contrasts. BlochGAN properly generated the target-contrast images using the autoencoder regularization based on the Bloch equation to identify the physical basis of the contrasts. BlochGAN consists of four sub-networks: an encoder, a decoder, a generator, and a discriminator. The encoder extracts features from the multi-contrast input images, and the generator creates target T2 FS images using the features extracted from the encoder. The discriminator assists network learning by providing adversarial loss, and the decoder reconstructs the input multi-contrast images and regularizes the learning process by providing reconstruction loss. The discriminator and the decoder are only used in the training process. Our results demonstrate that BlochGAN achieved quantitatively and qualitatively superior performance compared to conventional medical image synthesis methods in generating spine T2 FS images from T1-w, and T2-w images.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherElsevier-
dc.relation.isPartOfMEDICAL IMAGE ANALYSIS-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleFat-saturated image generation from multi-contrast MRIs using generative adversarial networks with Bloch equation-based autoencoder regularization-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Radiology (영상의학교실)-
dc.contributor.googleauthorSewon Kim-
dc.contributor.googleauthorHanbyol Jang-
dc.contributor.googleauthorSeokjun Hong-
dc.contributor.googleauthorYeong Sang Hong-
dc.contributor.googleauthorWon C Bae-
dc.contributor.googleauthorSungjun Kim-
dc.contributor.googleauthorDosik Hwang-
dc.identifier.doi10.1016/j.media.2021.102198-
dc.contributor.localIdA00585-
dc.relation.journalcodeJ02201-
dc.identifier.eissn1361-8423-
dc.identifier.pmid34403931-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S1361841521002437-
dc.subject.keywordAutoencoder regularization-
dc.subject.keywordBloch equation-
dc.subject.keywordGeneartive adversarial networks-
dc.subject.keywordImage synthesis-
dc.subject.keywordMagnetic resonance image-
dc.subject.keywordMulti-contrast imaging-
dc.contributor.alternativeNameKim, Sungjun-
dc.contributor.affiliatedAuthor김성준-
dc.citation.volume73-
dc.citation.startPage102198-
dc.identifier.bibliographicCitationMEDICAL IMAGE ANALYSIS, Vol.73 : 102198, 2021-10-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.