165 240

Cited 0 times in

Assessment of compatibility between various intraoral scanners and 3D printers through an accuracy analysis of 3D printed models

Other Titles
 3D 프린트 모델의 정확도 분석을 통한 다양한 구강 스캐너와 3D 프린터 간의 호환성 평가 
Authors
 임창희 
College
 College of Dentistry (치과대학) 
Department
 Others (기타) 
Degree
박사
Issue Date
2021-02
Abstract
Objective: To assess the accuracy of various types of intraoral scanners (IOSs) and to investigate the existence of mutual compatibility that affects the accuracy between various IOS and 3-dimensional (3D) printing using a scan quadrant model. Problem Statement: While numerous studies on various types of IOSs and 3D printers have been published, studies on the accuracy of according to compatibility between various IOSs and 3D printers’ devices is insufficient. Materials and Methods: A cobalt-chromium metal quadrant model fabricated by 3D printing was selected as the typodont model. The selected typodont model was scanned using a tabletop Identica T500 reference scanner, from which, reference (Ref) standard tessellation language (STL) data were created. Data obtained by scanning the typodont model with IOSs based on three different technologies, were divided into three control groups (CS3600, i500, and Trios3) depending on the scanner type. Scanned data from the control groups were divided into sub-groups of digital light processing (DLP), fused deposition modeling (FDM), and stereolithography apparatus (SLA) depending on the three different 3D printing types, based on which, 3D printed models (3DPs) were fabricated. The 3DP dental models were scanned by tabletop Identica T500 to obtain a total of 90 3DP STL datasets. The process method uses a best-fit algorithm of 3D analysis software (Geomagic Verify X 3D Systems) was used for teeth and arch measurements, while trueness was mesh deviation command analyzed by calculating the average deviation of the absolute values among measured. Therefore, through the shell-to-shell deviation automatically overlapping of Ref and IOS and 3DP STL files were each other measured. The differences between Ref and IOS (Ref-IOS); Ref and 3DP data (Ref-IOS/3DP); and IOS and 3DP data (IOS-3DP) were compared and analyzed, while accuracy within each of the three main groups was assessed. Color-coded maps were used for visualization of the distribution of size and deviation of digitized data sets. The data was analyzed not to follow the normal distribution after the Kolmogorov–Smirnov test of three major groups, nonparametric analysis was conducted. For statistical analysis, the median trueness values of the three major groups were analyzed using the Kruskal–Wallis test, after which, statistical significance of the Mann–Whitney U test was used for paired comparisons between data from each group (P <.05). Moreover, a repeated measures analysis of variance was performed to identify the differences between the deviations of IOS-3DP and Ref-IOS/3DP, while a comparative test was performed on analysis results from both intra oral scanning and 3D printing, and results from only 3D printing (P <.05). Results: In the comparison among the median Ref-IOS trueness values, which demonstrate only the IOS process, the median trueness of Ref-i500 (23.5 μm) was significantly lower than that of Ref-CS3600 (30.2 μm) (P <.05). In the comparison between the trueness values from both IOS and 3D printing processes and Ref-IOS/3DP superimposed data, Ref-CS3600/DLP (59.5 μm) was significantly higher than Ref-i500/DLP (43.2 μm) and Ref-Trios3/DLP (44.8 μm) (P <.05). Ref-CS3600/FDM (64.3 μm) was significantly lower than Ref-i500/FDM (81.9 μm) and Ref-Trios3/FDM (78.8 μm) (P <.05). Ref-i500/SLA (65.5 μm) was significantly higher than Ref-Trios3/SLA (56.6 μm) (P <.05). In the comparison between the trueness values from only the 3D printing process and IOS-3DP superimposed data, CS3600-DLP (51.8 μm) was significantly higher than i500-DLP (46.2 μm) (P <.05). CS3600-FDM (73.3 μm) was significantly lower than both i500-FDM (77.6 μm) and Trios3-FDM (78.8 μm) (P <.05). Conclusions: The major finding is that the mutual relationships between IOSs and 3D printers vary depending on the combination. No product could be identified


목적: 치과 임상에서 구강 스캐너 (IOS)와 3 차원 (3D) 프린터의 활용은 점차 늘어나고 있어서 수복영역, 교정영역 등에서 많은 관심을 불러일으키고 있다. IOS로 인기 된 자료를 3D 프린터로 출력하여 임상에 많이 활용되고 있다. 다양한 방식의 IOS가 있고 3D 프린터 또는 다양한 방식의 제품들이 있어서 상호교차 사용되고 있는데 이러한 교차사용에서 기기간의 호환성에 따른 정확성의 차이에 대한 연구는 부족한 상황이다. 본 연구의 목적은 다양한 IOS의 정확도를 평가하고 스캔 사분면 모델을 사용하여 IOS와 3D 프린팅 간의 조합에 따른 정확도에 영향을 미치는 상호 호환성이 존재하는 지를 추가로 조사하는 것이다. 재료 및 방법: 임상 적 의미를 위해, 보철 진단 및 치료 고려 사항에 따른 crown preparations 및 cavity 디자인은 디지털 스캐너로 획득해야한다. 제조업제에 따라3D 프린팅으로 제작된 코발트-크롬 사분면 모델이 typodont 모델로 선택되었다. Tabletop Identica T500 참조 스캐너를 사용하여 선택된 typodont 모델을 스캔하고 참조 (Ref) standard tessellation language (STL) 데이터가 만들어졌다. 세 종류의 다른 기술에 기반한 IOS로 typodont 모델을 스캔하여 얻어진 각각 데이터를 스캐너 유형에 따라 CS3600, i500 및 Trios3이라고 세 가지 그룹으로 나눴다. 그룹의 얻어진 스캐너 (IOS) 데이터를 사용하여 세 가지 다른 3D 프린팅 유형에 따라 digital light processing (DLP), fused deposition modeling (FDM) 및 stereolithography apparatus (SLA)이라고 서브 그룹으로 나누어 졌고 3D printed 모델이 제조되었다. 출력한 3D 치과 모델을 스캔하여 총 90 개의 3D 모델 (3DP) STL 데이터 세트를 얻었다. 측정 프로세스 방법은 치아 및 악궁의 계측을 시행하기 위해 3D 분석 소프트웨어 (Geomagic Verify X 3D Systems)의 최적 알고리즘을 사용했으나 trueness는 절대 값의 평균 편차로 계산했다. 따라서 mesh deviation command를 이용하여 자동으로 겹치는 shell-to-shell 편차를 통해 Ref와 IOS 및 3DP STL 파일이 서로 간에 차이가 측정되었습니다. Ref와 IOS 데이터 (Ref-IOS)를 차이 비교, Ref와 3D 모델 데이터 (Ref-IOS/3DP)의 차이 비교, 또한 IOS와 3DP 모델 데이터 (IOS-3DP) 차이 비교를 분석하고 세 메인 그룹 안에서 각각의 정확도가 평가되었다. 디지털화 된 데이터 세트 사이의 크기 및 편차 분포를 시각화하기 위해 color-coded map이 사용되었다. 통계 분석은 주요 3 그룹의 median trueness values은 Kruskal-Wallis 테스트를 적용하여 분석한 후, 각 군간 전체 데이터 간의 페어 별 비교를 위해 Mann-Whitney U 테스트의 통계적 유의성을 수행되었으며 각 스캐너 상호 작용 및 post hoc Bonferroni test 보정의 분석도 사용되었다 (P <.05). 도한 IOS-3DP 및 Ref-IOS/3DP 편차 간의 차이를 파악하기 위해 반복측정 ANOVA (repeated measure ANOVA)를 시행하였고 구강스캔과 3D 프린팅을 모두 거친 결과 분석과 3D 프린팅만 분석한 내용을 비교 및 검증하였다(P <.05). 결과: IOS 과정 만의 trueness 값 Ref-IOS 중첩 데이터 비교 간의 결과에서 i500 (23.5 μm)는 CS3600 (30.2 μm) 보다 유의하게 낮았다 (P <.05). IOS와 3D 프린팅 과정 전체의 trueness 값 Ref-IOS/3DP 충첩 데이터 비교 간의 결과에서 Ref-CS3600/DLP (59.5 μm)는 Ref-i500/DLP (43.2 μm) 및 Ref-Trios3/DLP (44.8 μm) 보다 유의하게 높았다 (P <.05). Ref-CS3600/FDM (64.3 μm)는 Ref-i500/FDM (81.9 μm) 및 Ref-Trios3/FDM (78.8 μm)의 보다 유의하게 낮았다 (P <.05). Ref-i500/SLA (65.5 μm)는 Ref-Trios3/SLA (56.6 μm) 보다 유의하게 높았다 (P <.05). 3D 프린팅 과정 만의 trueness 값 IOS-3DP 충첩 데이터 비교 간의 결과에서 CS3600-DLP (51.8 μm)는 i500-DLP (46.2 μm)의 보다 유의하게 높았다 (P <.05). CS3600-FDM (73.3 μm)는 i500-FDM (77.6 μm) 및 Trios3-FDM (78.8 μm) 보다 유의하게 낮았다 (P <.05). 결론: 주요 결과는 IOS와 3D 프린터 간의 상호관계는 조합에 따라 다르다. 가장 정확한 제품을 식별할 할 수 없었다. 세 가지 방식의 3D 프린터로 출력한 치과 모델 데이터의 정확도에는 유의한 차이가 존재하였다. 모든 Digital light processing 유형의 3D 프린터가 가장 정확했다. 모든 스캐너에서 프린터를 사용한 경우가 가장 정확했다.
Files in This Item:
TA02958.pdf Download
Appears in Collections:
2. College of Dentistry (치과대학) > Others (기타) > 3. Dissertation
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/185319
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links