Cited 25 times in
Radiomics With Ensemble Machine Learning Predicts Dopamine Agonist Response in Patients With Prolactinoma
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 구철룡 | - |
dc.contributor.author | 김의현 | - |
dc.contributor.author | 김휘영 | - |
dc.contributor.author | 박예원 | - |
dc.contributor.author | 안성수 | - |
dc.contributor.author | 이승구 | - |
dc.contributor.author | 이은직 | - |
dc.date.accessioned | 2021-09-29T01:32:40Z | - |
dc.date.available | 2021-09-29T01:32:40Z | - |
dc.date.issued | 2021-08 | - |
dc.identifier.issn | 0021-972X | - |
dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/184422 | - |
dc.description.abstract | Context: Early identification of the response of prolactinoma patients to dopamine agonists (DA) is crucial in treatment planning. Objective: To develop a radiomics model using an ensemble machine learning classifier with conventional magnetic resonance images (MRIs) to predict the DA response in prolactinoma patients. Design: Retrospective study. Setting: Severance Hospital, Seoul, Korea. Patients: A total of 177 prolactinoma patients who underwent baseline MRI (109 DA responders and 68 DA nonresponders) were allocated to the training (n = 141) and test (n = 36) sets. Radiomic features (n = 107) were extracted from coronal T2-weighed MRIs. After feature selection, single models (random forest, light gradient boosting machine, extra-trees, quadratic discrimination analysis, and linear discrimination analysis) with oversampling methods were trained to predict the DA response. A soft voting ensemble classifier was used to achieve the final performance. The performance of the classifier was validated in the test set. Results: The ensemble classifier showed an area under the curve (AUC) of 0.81 [95% confidence interval (CI), 0.74-0.87] in the training set. In the test set, the ensemble classifier showed an AUC, accuracy, sensitivity, and specificity of 0.81 (95% CI, 0.67-0.96), 77.8%, 78.6%, and 77.3%, respectively. The ensemble classifier achieved the highest performance among all the individual models in the test set. Conclusions: Radiomic features may be useful biomarkers to predict the DA response in prolactinoma patients. | - |
dc.description.statementOfResponsibility | restriction | - |
dc.language | English | - |
dc.publisher | Endocrine Society | - |
dc.relation.isPartOf | JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM | - |
dc.rights | CC BY-NC-ND 2.0 KR | - |
dc.title | Radiomics With Ensemble Machine Learning Predicts Dopamine Agonist Response in Patients With Prolactinoma | - |
dc.type | Article | - |
dc.contributor.college | College of Medicine (의과대학) | - |
dc.contributor.department | Dept. of Internal Medicine (내과학교실) | - |
dc.contributor.googleauthor | Yae Won Park | - |
dc.contributor.googleauthor | Jihwan Eom | - |
dc.contributor.googleauthor | Sooyon Kim | - |
dc.contributor.googleauthor | Hwiyoung Kim | - |
dc.contributor.googleauthor | Sung Soo Ahn | - |
dc.contributor.googleauthor | Cheol Ryong Ku | - |
dc.contributor.googleauthor | Eui Hyun Kim | - |
dc.contributor.googleauthor | Eun Jig Lee | - |
dc.contributor.googleauthor | Sun Ho Kim | - |
dc.contributor.googleauthor | Seung-Koo Lee | - |
dc.identifier.doi | 10.1210/clinem/dgab159 | - |
dc.contributor.localId | A00201 | - |
dc.contributor.localId | A00560 | - |
dc.contributor.localId | A00837 | - |
dc.contributor.localId | A05971 | - |
dc.contributor.localId | A05330 | - |
dc.contributor.localId | A02234 | - |
dc.contributor.localId | A02912 | - |
dc.contributor.localId | A03050 | - |
dc.relation.journalcode | J01318 | - |
dc.identifier.eissn | 1945-7197 | - |
dc.identifier.pmid | 33713414 | - |
dc.identifier.url | https://academic.oup.com/jcem/article/106/8/e3069/6170124 | - |
dc.subject.keyword | machine learning | - |
dc.subject.keyword | magnetic resonance imaging | - |
dc.subject.keyword | pituitary neoplasms | - |
dc.subject.keyword | prolactinoma | - |
dc.subject.keyword | radiomics | - |
dc.contributor.alternativeName | Ku, Cheol Ryong | - |
dc.contributor.affiliatedAuthor | 구철룡 | - |
dc.contributor.affiliatedAuthor | 김의현 | - |
dc.contributor.affiliatedAuthor | 김휘영 | - |
dc.contributor.affiliatedAuthor | 박예원 | - |
dc.contributor.affiliatedAuthor | 안성수 | - |
dc.contributor.affiliatedAuthor | 이승구 | - |
dc.contributor.affiliatedAuthor | 이은직 | - |
dc.citation.volume | 106 | - |
dc.citation.number | 8 | - |
dc.citation.startPage | e3069 | - |
dc.citation.endPage | e3077 | - |
dc.identifier.bibliographicCitation | JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, Vol.106(8) : e3069-e3077, 2021-08 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.