0 311

Cited 11 times in

Artificial neural network for multi-echo gradient echo-based myelin water fraction estimation

DC Field Value Language
dc.contributor.author박미나-
dc.date.accessioned2021-04-29T16:42:23Z-
dc.date.available2021-04-29T16:42:23Z-
dc.date.issued2021-01-
dc.identifier.issn0740-3194-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/181974-
dc.description.abstractPurpose: To demonstrate robust myelin water fraction (MWF) mapping using an artificial neural network (ANN) with multi-echo gradient-echo (GRE) signal. Methods: Multi-echo gradient-echo signals simulated with a three-pool exponential model were used to generate the training data set for the ANN, which was designed to yield the MWF. We investigated the performance of our proposed ANN for various conditions using both numerical simulations and in vivo data. Simulations were conducted with various SNRs to investigate the performance of the ANN. In vivo data with high spatial resolutions were applied in the analyses, and results were compared with MWFs derived by the nonlinear least-squares algorithm using a complex three-pool exponential model. Results: The network results for the simulations show high accuracies against noise compared with nonlinear least-squares MWFs: RMS-error value of 5.46 for the nonlinear least-squares MWF and 3.56 for the ANN MWF at an SNR of 150 (relative gain = 34.80%). These effects were also found in the in vivo data, with reduced SDs in the region-of-interest analyses. These effects of the ANN demonstrate the feasibility of acquiring high-resolution myelin water images. Conclusion: The simulation results and in vivo data suggest that the ANN facilitates more robust MWF mapping in multi-echo gradient-echo sequences compared with the conventional nonlinear least-squares method.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherWiley-
dc.relation.isPartOfMAGNETIC RESONANCE IN MEDICINE-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleArtificial neural network for multi-echo gradient echo-based myelin water fraction estimation-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Radiology (영상의학교실)-
dc.contributor.googleauthorSoozy Jung-
dc.contributor.googleauthorHongpyo Lee-
dc.contributor.googleauthorKanghyun Ryu-
dc.contributor.googleauthorJae Eun Song-
dc.contributor.googleauthorMina Park-
dc.contributor.googleauthorWon-Jin Moon-
dc.contributor.googleauthorDong-Hyun Kim-
dc.identifier.doi10.1002/mrm.28407-
dc.contributor.localIdA01460-
dc.relation.journalcodeJ02179-
dc.identifier.eissn1522-2594-
dc.identifier.pmid32686208-
dc.identifier.urlhttps://onlinelibrary.wiley.com/doi/10.1002/mrm.28407-
dc.subject.keywordT 2 ∗ distribution-
dc.subject.keywordartificial neural network-
dc.subject.keywordmulti-echo gradient echo-
dc.subject.keywordmyelin water imaging-
dc.contributor.alternativeNamePark, Mina-
dc.contributor.affiliatedAuthor박미나-
dc.citation.volume85-
dc.citation.number1-
dc.citation.startPage380-
dc.citation.endPage389-
dc.identifier.bibliographicCitationMAGNETIC RESONANCE IN MEDICINE, Vol.85(1) : 380-389, 2021-01-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.