Cited 46 times in
Artificial intelligence in musculoskeletal ultrasound imaging
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Shin, YiRang | - |
dc.contributor.author | Yang, Jaemoon | - |
dc.contributor.author | Lee, Young Han | - |
dc.contributor.author | Kim, Sungjun | - |
dc.date.accessioned | 2021-03-31T02:01:00Z | - |
dc.date.available | 2021-03-31T02:01:00Z | - |
dc.date.created | 2021-02-22 | - |
dc.date.issued | 2021-01 | - |
dc.identifier.issn | 2288-5919 | - |
dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/181860 | - |
dc.description.abstract | Ultrasonography (US) is noninvasive and offers real-time, low-cost, and portable imaging that facilitates the rapid and dynamic assessment of musculoskeletal components. Significant technological improvements have contributed to the increasing adoption of US for musculoskeletal assessments, as artificial intelligence (AI)-based computer-aided detection and computer-aided diagnosis are being utilized to improve the quality, efficiency, and cost of US imaging. This review provides an overview of classical machine learning techniques and modern deep learning approaches for musculoskeletal US, with a focus on the key categories of detection and diagnosis of musculoskeletal disorders, predictive analysis with classification and regression, and automated image segmentation. Moreover, we outline challenges and a range of opportunities for AI in musculoskeletal US practice. | - |
dc.format | application/pdf | - |
dc.language | 영어 | - |
dc.publisher | KOREAN SOC ULTRASOUND MEDICINE | - |
dc.relation.isPartOf | ULTRASONOGRAPHY | - |
dc.title | Artificial intelligence in musculoskeletal ultrasound imaging | - |
dc.type | Article | - |
dc.contributor.googleauthor | Shin, YiRang | - |
dc.contributor.googleauthor | Yang, Jaemoon | - |
dc.contributor.googleauthor | Lee, Young Han | - |
dc.contributor.googleauthor | Kim, Sungjun | - |
dc.identifier.doi | 10.14366/usg.20080 | - |
dc.relation.journalcode | J02768 | - |
dc.identifier.eissn | 2288-5943 | - |
dc.subject.keyword | Ultrasonography | - |
dc.subject.keyword | Musculoskeletal system | - |
dc.subject.keyword | Artificial intelligence | - |
dc.subject.keyword | Machine learning | - |
dc.subject.keyword | Deep learning | - |
dc.contributor.affiliatedAuthor | Shin, YiRang | - |
dc.contributor.affiliatedAuthor | Yang, Jaemoon | - |
dc.contributor.affiliatedAuthor | Lee, Young Han | - |
dc.contributor.affiliatedAuthor | Kim, Sungjun | - |
dc.identifier.scopusid | 2-s2.0-85099320052 | - |
dc.identifier.wosid | 000602774600005 | - |
dc.citation.title | ULTRASONOGRAPHY | - |
dc.citation.volume | 40 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 30 | - |
dc.citation.endPage | 44 | - |
dc.identifier.bibliographicCitation | ULTRASONOGRAPHY, Vol.40(1) : 30-44, 2021-01 | - |
dc.identifier.rimsid | 67610 | - |
dc.type.rims | ART | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.subject.keywordAuthor | Ultrasonography | - |
dc.subject.keywordAuthor | Musculoskeletal system | - |
dc.subject.keywordAuthor | Artificial intelligence | - |
dc.subject.keywordAuthor | Machine learning | - |
dc.subject.keywordAuthor | Deep learning | - |
dc.subject.keywordPlus | QUANTITATIVE MUSCLE ULTRASOUND | - |
dc.subject.keywordPlus | DEVELOPMENTAL DYSPLASIA | - |
dc.subject.keywordPlus | TEXTURE ANALYSIS | - |
dc.subject.keywordPlus | IMAGES | - |
dc.subject.keywordPlus | ULTRASONOGRAPHY | - |
dc.subject.keywordPlus | CLASSIFICATION | - |
dc.subject.keywordPlus | SEGMENTATION | - |
dc.subject.keywordPlus | CARTILAGE | - |
dc.subject.keywordPlus | HIP | - |
dc.subject.keywordPlus | LOCALIZATION | - |
dc.type.docType | Review | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Radiology, Nuclear Medicine & Medical Imaging | - |
dc.relation.journalResearchArea | Radiology, Nuclear Medicine & Medical Imaging | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.