0 504

Cited 7 times in

Radiomics risk score may be a potential imaging biomarker for predicting survival in isocitrate dehydrogenase wild-type lower-grade gliomas

Authors
 Chae Jung Park  ;  Kyunghwa Han  ;  Hwiyoung Kim  ;  Sung Soo Ahn  ;  Yoon Seong Choi  ;  Yae Won Park  ;  Jong Hee Chang  ;  Se Hoon Kim  ;  Rajan Jain  ;  Seung-Koo Lee 
Citation
 EUROPEAN RADIOLOGY, Vol.30(12) : 6464-6474, 2020-12 
Journal Title
EUROPEAN RADIOLOGY
ISSN
 0938-7994 
Issue Date
2020-12
Keywords
Glioma ; Isocitrate dehydrogenase ; Magnetic resonance imaging ; Radiomics ; Survival
Abstract
Objectives: Isocitrate dehydrogenase wild-type (IDHwt) lower-grade gliomas of histologic grades II and III follow heterogeneous clinical outcomes, which necessitates risk stratification. We aimed to evaluate whether radiomics from MRI would allow prediction of overall survival in patients with IDHwt lower-grade gliomas and to investigate the added prognostic value of radiomics over clinical features.

Methods: Preoperative MRIs of 117 patients with IDHwt lower-grade gliomas from January 2007 to February 2018 were retrospectively analyzed. The external validation cohort consisted of 33 patients from The Cancer Genome Atlas. A total of 182 radiomic features were extracted. Radiomics risk scores (RRSs) for overall survival were derived from the least absolute shrinkage and selection operator (LASSO) and elastic net. Multivariable Cox regression analyses, including clinical features and RRSs, were performed. The integrated areas under the receiver operating characteristic curves (iAUCs) from models with and without RRSs were calculated for comparisons. The prognostic value of RRS was assessed in the validation cohort.

Results: The RRS derived from LASSO and elastic net independently predicted survival with hazard ratios of 9.479 (95% confidence interval [CI], 3.220-27.847) and 6.148 (95% CI, 3.009-12.563), respectively. Those RRSs enhanced model performance for predicting overall survival (iAUC increased to 0.780-0.797 from 0.726), which was externally validated. The RRSs stratified IDHwt lower-grade gliomas in the validation cohort with significantly different survival.

Conclusion: Radiomics has the potential for noninvasive risk stratification and can improve prediction of overall survival in patients with IDHwt lower-grade gliomas when integrated with clinical features.

Key points: • Isocitrate dehydrogenase wild-type lower-grade gliomas with histologic grades II and III follow heterogeneous clinical outcomes, which necessitates further risk stratification. • Radiomics risk scores derived from MRI independently predict survival even after incorporating strong clinical prognostic features (hazard ratios 6.148-9.479). • Radiomics risk scores derived from MRI have the potential to improve survival prediction when added to clinical features (integrated areas under the receiver operating characteristic curves increased from 0.726 to 0.780-0.797).
Full Text
https://link.springer.com/article/10.1007/s00330-020-07089-w
DOI
10.1007/s00330-020-07089-w
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Biomedical Systems Informatics (의생명시스템정보학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Neurosurgery (신경외과학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Pathology (병리학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers
Yonsei Authors
Kim, Se Hoon(김세훈) ORCID logo https://orcid.org/0000-0001-7516-7372
Kim, Hwiyoung(김휘영)
Park, Yae Won(박예원) ORCID logo https://orcid.org/0000-0001-8907-5401
Park, Chae Jung(박채정) ORCID logo https://orcid.org/0000-0002-5567-8658
Ahn, Sung Soo(안성수) ORCID logo https://orcid.org/0000-0002-0503-5558
Lee, Seung Koo(이승구) ORCID logo https://orcid.org/0000-0001-5646-4072
Chang, Jong Hee(장종희) ORCID logo https://orcid.org/0000-0003-1509-9800
Choi, Yoon Seong(최윤성)
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/181368
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links