0 430

Cited 3 times in

Accelerated metallic artifact reduction imaging using spectral bin modulation of multiacquisition variable-resonance image combination selective imaging

DC Field Value Language
dc.contributor.author서진석-
dc.contributor.author송호택-
dc.contributor.author이영한-
dc.date.accessioned2020-12-01T17:35:26Z-
dc.date.available2020-12-01T17:35:26Z-
dc.date.issued2020-10-
dc.identifier.issn0730-725X-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/180339-
dc.description.abstractObjectives: To assess the clinical utility of a prototype sequence for metal artifact reduction, the multiacquisition variable-resonance image combination selective (MAVRIC-SL) at 3 T. This sequence allows a surgical prosthesis-dependent reduction in the number of spectral bins. We compared the prototype MAVRIC SL to the conventional two-dimensional fast spin-echo (FSE) sequences and MAVRIC SL images acquired with all spectral bins to those acquired with the optimized number of spectral bins. Methods: MAVRIC SL images were acquired in 25 image sets from August 2017 to April 2018. For each subject, the optimized number of spectral bins was determined using a short spectral calibration scan. The image sets obtained with magnetic resonance imaging that were used for the analysis consisted of MAVRIC-SL proton density (PD)-weighted or short inversion time inversion recovery (STIR) images acquired with all 24 spectral bins, the corresponding images with the optimized number of spectral bins, and the conventional two-dimensional FSE or STIR PD-weighted images. A musculoskeletal radiologist reviewed and scored the images using a five-point scale for artifact reduction around the prosthesis and visualization of the prosthesis and peri-prosthetic tissues. Quantitative evaluation of the peri-prosthetic tissues was also performed. The Wilcoxon rank-sum test was used to test for significance. Results: The MAVRIC SL images enabled a significantly improved reduction in metallic artifacts compared to the conventional two-dimensional FSE sequences. The optimized number of spectral bins ranged from 6 to 20, depending on the prosthesis susceptibility difference, size, and orientation to the B0 field. The scan times significantly decreased with a reduced number of spectral bins (354.0 ± 139.1 versus 283.0 ± 89.6 s; 20% reduced scan time; p < .05). Compared to the MAVRIC SL images acquired with all 24 bins, the artifact reduction and visualization of the prosthesis and peri-prosthetic tissues on the MAVRIC SL images acquired with calibrated bins were not significantly different. Conclusions: Compared to the MAVRIC SL images acquired with all 24 spectral bins, those acquired with an optimized number of spectral bins can reduce metallic artifacts with no significant image quality degradation while providing reduced scan time.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherElsevier-
dc.relation.isPartOfMAGNETIC RESONANCE IMAGING-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleAccelerated metallic artifact reduction imaging using spectral bin modulation of multiacquisition variable-resonance image combination selective imaging-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Radiology (영상의학교실)-
dc.contributor.googleauthorSalman S Albakheet-
dc.contributor.googleauthorYoung Han Lee-
dc.contributor.googleauthorSeok Hahn-
dc.contributor.googleauthorHo-Taek Song-
dc.contributor.googleauthorJin-Suck Suh-
dc.contributor.googleauthorSivaram Kaushik-
dc.identifier.doi10.1016/j.mri.2020.06.012-
dc.contributor.localIdA01916-
dc.contributor.localIdA02080-
dc.contributor.localIdA02967-
dc.relation.journalcodeJ02178-
dc.identifier.eissn1873-5894-
dc.identifier.pmid32574683-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0730725X19306435-
dc.subject.keywordArtifact reduction-
dc.subject.keywordMagnetic resonance imaging (MRI)-
dc.subject.keywordMultiacquisition variable-resonance image combination selective (MAVRIC-SL)-
dc.subject.keywordPeri-prosthetic imaging-
dc.subject.keywordSpectral bin-
dc.contributor.alternativeNameSuh, Jin Suck-
dc.contributor.affiliatedAuthor서진석-
dc.contributor.affiliatedAuthor송호택-
dc.contributor.affiliatedAuthor이영한-
dc.citation.volume72-
dc.citation.startPage19-
dc.citation.endPage24-
dc.identifier.bibliographicCitationMAGNETIC RESONANCE IMAGING, Vol.72 : 19-24, 2020-10-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.