14 32

Cited 0 times in

Do Rotation and Measurement Methods Affect Reliability of Anterior Cruciate Ligament Tunnel Position on 3D Reconstructed Computed Tomography?

Authors
 Hyun-Soo Moon  ;  Chong-Hyuk Choi  ;  Min Jung  ;  Dae-Young Lee  ;  Hsienhao Chang  ;  Sung-Hwan Kim 
Citation
 Orthopaedic Journal of Sports Medicine, Vol.7(12) : e2325967119885882, 2019 
Journal Title
 Orthopaedic Journal of Sports Medicine 
Issue Date
2019
Keywords
3-dimensional CT analysis ; ACL reconstruction ; ACL tunnel position measurement ; rotation
Abstract
Background: The literature has seldom investigated the anterior cruciate ligament (ACL) tunnel position while considering the effect of rotation of 3-dimensional computed tomography (3D-CT) images during measurements. Hypothesis: We hypothesized that (1) measurement of the ACL tunnel position in the femur and tibia through use of 3D-CT is considerably influenced by rotation of the 3D model and (2) there exists a reliable measurement method for ACL tunnel position least affected by rotation. Study Design: Controlled laboratory study. Methods: The 3D-CT images of 30 randomly selected patients who underwent single-bundle ACL reconstruction were retrospectively reviewed. For femoral tunnel assessments, rectangular reference frames were used that involved the highest point of the intercondylar notch and outer margins of the lateral femoral condyle (method 1), the highest point of the intercondylar notch and outer margins of the lateral wall of the intercondylar notch (method 2), and the lowest point of the intercondylar notch and outer margins of the lateral femoral condyle (method 3). For tibial tunnel assessments, rectangular reference frames with the cortical outline at the articular surface of the tibia (method A) and the cortical outline of the proximal tibia (method B) were used. For both femoral and tibial assessments, the tunnel positions at 5°, 10°, and 15° of rotation of the 3D model were compared with that at a neutral position. Results: The values measured by methods 1 and 3 showed significant differences at greater than 5° of rotation compared with the value at the neutral position, whereas method 2 showed relatively consistent results. However, the values measured with both methods A and B showed significant differences at greater than 5° of rotation compared with the value at the neutral position. Conclusion: The tunnel position on 3D-CT images was significantly influenced by rotation during measurements. For femoral tunnel position, measurement with a reference frame using the lateral wall of the intercondylar notch (method 2) was the least affected by rotation, with relatively consistent results. Clinical Relevance: This study demonstrates that measurement using the lateral wall of the intercondylar notch might be a consistent and reliable method for evaluating the ACL femoral tunnel position considering the effect of 3D-CT image rotation during measurements. However, both methods to measure tibial tunnel position described in this study were similarly affected by rotation.
Files in This Item:
T201905104.pdf Download
DOI
10.1177/2325967119885882
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Orthopedic Surgery (정형외과학교실) > 1. Journal Papers
Yonsei Authors
Kim, Sung Hwan(김성환) ORCID logo https://orcid.org/0000-0001-5743-6241
Moon, Hyun-Soo(문현수)
Chang, Hsienhao(장선호)
Jung, Min(정민) ORCID logo https://orcid.org/0000-0002-7527-4802
Choi, Chong Hyuk(최종혁) ORCID logo https://orcid.org/0000-0002-9080-4904
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/174641
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse