0 182

Cited 2 times in

Epigenetic Regulation of Dlg1, via Kaiso, Alters Mitotic Spindle Polarity and Promotes Intestinal Tumorigenesis

Authors
 Madeleine A. Young  ;  Stephanie May  ;  Angelos Damo  ;  Young So Yoon  ;  Man-Wook Hur  ;  Wojiech Swat  ;  Lee Parry 
Citation
 MOLECULAR CANCER RESEARCH, Vol.17(3) : 686-696, 2019 
Journal Title
 MOLECULAR CANCER RESEARCH 
ISSN
 1541-7786 
Issue Date
2019
Abstract
Both alterations to the epigenome and loss of polarity have been linked to cancer initiation, progression, and metastasis. It has previously been demonstrated that loss of the epigenetic reader protein Kaiso suppresses intestinal tumorigenesis in the Apc+/min mouse model, in which altered polarity plays a key role. Thus, we investigated the link between Kaiso deficiency, polarity, and suppression of intestinal tumorigenesis. We used Kaiso-deficient mice to conditionally delete Apc within the intestinal epithelia and demonstrated upregulation of the spindle polarity genes Dlg1 and Dlgap1. To understand the role of Dlg1, we generated Villin-creApc+/minDlg1flx/flx Kaiso-/y mice to analyze gene expression, survival, tumor burden, and spindle orientation. In vivo analysis of the Dlg1-deficient intestine revealed improper orientation of mitotic spindles and a decreased rate of cellular migration. Loss of Dlg1 decreased survival in Apc+/min mice, validating its role as a tumor suppressor in the intestine. Significantly, the increased survival of Apc+/minKaisoy/- mice was shown to be dependent on Dlg1 expression. Taken together, these data indicate that maintenance of spindle polarity in the intestinal crypt requires appropriate regulation of Dlg1 expression. As Dlg1 loss leads to incorrect spindle orientation and a delay in cells transiting the intestinal crypt. We propose that the delayed exit from the crypt increase the window in which spontaneous mutations can become fixed, producing a "tumor-permissive" environment, without an increase in mutation rate. IMPLICATIONS: Loss of mitotic spindle polarity delays the exit of cells from the intestinal crypt and promotes a tumorigenic environment.
Full Text
http://mcr.aacrjournals.org/content/17/3/686.long
DOI
10.1158/1541-7786.MCR-18-0280
Appears in Collections:
1. College of Medicine (의과대학) > BioMedical Science Institute (의생명과학부) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Biochemistry and Molecular Biology (생화학-분자생물학교실) > 1. Journal Papers
Yonsei Authors
Yoon, Young So(윤영소)
Hur, Man Wook(허만욱) ORCID logo https://orcid.org/0000-0002-3416-1334
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/169872
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links