0 722

Cited 10 times in

Computational analysis of airflow dynamics for predicting collapsible sites in the upper airways: a preliminary study

Authors
 Ji Sung Na  ;  Hwi-Dong Jung  ;  Hyung-Ju Cho  ;  Yoon Jeong Choi  ;  Joon Sang Lee 
Citation
 JOURNAL OF APPLIED PHYSIOLOGY , Vol.126(2) : 330-340, 2019 
Journal Title
JOURNAL OF APPLIED PHYSIOLOGY
ISSN
 8750-7587 
Issue Date
2019
Keywords
deformation ; flow characteristics ; obstructive sleep apnea ; pressure change ; vortex structure
Abstract
The present study aimed to detail the relationship between the flow and structure characteristics of the upper airways and airway collapsibility in obstructive sleep apnea. Using a computational approach, we performed simulations of the flow and structure of the upper airways in two patients having different facial morphologies: retruding and protruding jaws, respectively. First, transient flow simulation was performed using a prescribed volume flow rate to observe flow characteristics within upper airways with an unsteady effect. In the retruding jaw, the maximum magnitude of velocity and pressure drop with velocity shear and vortical motion was observed at the oropharyngeal level. In contrast, in the protruding jaw, the overall magnitude of velocity and pressure was relatively small. To identify the cause of the pressure drop in the retruding jaw, pressure gradient components induced by flow were examined. Of note, vortical motion was highly associated with pressure drop. Structure simulation was performed to observe the deformation and collapsibility of soft tissue around the upper airways using the surface pressure obtained from the flow simulation. At peak flow rate, the soft tissue of the retruding jaw was highly expanded, and a collapse was observed at the oropharyngeal and epiglottis levels. NEW & NOTEWORTHY Aerodynamic characteristics have been reported to correlate with airway occlusion. However, a detailed mechanism of the phenomenon within the upper airways and its impact on airway collapsibility remain poorly understood. This study provides in silico results for aerodynamic characteristics, such as vortical structure, pressure drop, and exact location of the obstruction using a computational approach. Large deformation of soft tissue was observed in the retruding jaw, suggesting that it is responsible for obstructive sleep apnea.
Full Text
http://www.physiology.org/doi/full/10.1152/japplphysiol.00522.2018
DOI
10.1152/japplphysiol.00522.2018
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Otorhinolaryngology (이비인후과학교실) > 1. Journal Papers
2. College of Dentistry (치과대학) > Dept. of Oral and Maxillofacial Surgery (구강악안면외과학교실) > 1. Journal Papers
2. College of Dentistry (치과대학) > Dept. of Orthodontics (교정과학교실) > 1. Journal Papers
Yonsei Authors
Jung, Hwi Dong(정휘동) ORCID logo https://orcid.org/0000-0003-1025-8323
Cho, Hyung Ju(조형주) ORCID logo https://orcid.org/0000-0002-2851-3225
Choi, Yoon Jeong(최윤정) ORCID logo https://orcid.org/0000-0003-0781-8836
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/167628
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links