0 17

Cited 0 times in

Development of a patient and institutional-based model for estimation of operative times for robot-assisted radical cystectomy: results from the International Robotic Cystectomy Consortium

Authors
 Ahmed A. Hussein  ;  Paul R. May  ;  Youssef E. Ahmed  ;  Matthias Saar  ;  Carl J. Wijburg  ;  Lee Richstone  ;  Andrew Wagner  ;  Timothy Wilson  ;  Bertram Yuh  ;  Joan P. Redorta  ;  Prokar Dasgupta  ;  Omar Kawa  ;  Mohammad S. Khan  ;  Mani Menon  ;  James O. Peabody  ;  Abolfazl Hosseini  ;  Franco Gaboardi  ;  Giovannalberto Pini  ;  Francis Schanne  ;  Alexandre Mottrie  ;  Koon‐ho Rha  ;  Ashok Hemal  ;  Michael Stockle  ;  John Kelly  ;  Wei S. Tan  ;  Thomas J. Maatman  ;  Vassilis Poulakis  ;  Jihad Kaouk  ;  Abdullah E. Canda  ;  Mevlana D. Balbay  ;  Peter Wiklund  ;  Khurshid A. Guru 
Citation
 BJU International, Vol.120(5) : 695-701, 2017 
Journal Title
 BJU International 
ISSN
 1464-4096 
Issue Date
2017
MeSH
Cystectomy* ; Humans ; Models, Theoretical* ; Operative Time* ; Personnel Staffing and Scheduling ; Quality Control ; Retrospective Studies ; Robotic Surgical Procedures*
Keywords
cystectomy ; operative time ; quality control ; robot-assisted ; scheduling
Abstract
OBJECTIVES: To design a methodology to predict operative times for robot-assisted radical cystectomy (RARC) based on variation in institutional, patient, and disease characteristics to help in operating room scheduling and quality control. PATIENTS AND METHODS: The model included preoperative variables and therefore can be used for prediction of surgical times: institutional volume, age, gender, body mass index, American Society of Anesthesiologists score, history of prior surgery and radiation, clinical stage, neoadjuvant chemotherapy, type, technique of diversion, and the extent of lymph node dissection. A conditional inference tree method was used to fit a binary decision tree predicting operative time. Permutation tests were performed to determine the variables having the strongest association with surgical time. The data were split at the value of this variable resulting in the largest difference in means for the surgical time across the split. This process was repeated recursively on the resultant data sets until the permutation tests showed no significant association with operative time. RESULTS: In all, 2 134 procedures were included. The variable most strongly associated with surgical time was type of diversion, with ileal conduits being 70 min shorter (P < 0.001). Amongst patients who received neobladders, the type of lymph node dissection was also strongly associated with surgical time. Amongst ileal conduit patients, institutional surgeon volume (>66 RARCs) was important, with those with a higher volume being 55 min shorter (P < 0.001). The regression tree output was in the form of box plots that show the median and ranges of surgical times according to the patient, disease, and institutional characteristics. CONCLUSION: We developed a method to estimate operative times for RARC based on patient, disease, and institutional metrics that can help operating room scheduling for RARC.
URI
http://ir.ymlib.yonsei.ac.kr/handle/22282913/161452
DOI
10.1111/bju.13934
Appears in Collections:
1. Journal Papers (연구논문) > 1. College of Medicine (의과대학) > Dept. of Urology (비뇨의학교실)
Yonsei Authors
나군호(Rha, Koon Ho)
사서에게 알리기
  feedback
Full Text
https://onlinelibrary.wiley.com/doi/abs/10.1111/bju.13934
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse