0 580

Cited 0 times in

Cited 1 times in

High-SNR multiple T2 (*)-contrast magnetic resonance imaging using a robust denoising method based on tissue characteristics

DC Field Value Language
dc.contributor.author안성수-
dc.date.accessioned2018-07-20T07:28:19Z-
dc.date.available2018-07-20T07:28:19Z-
dc.date.issued2017-
dc.identifier.issn1053-1807-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/160192-
dc.description.abstractPURPOSE: To develop an effective method that can suppress noise in successive multiecho T2 (*)-weighted magnetic resonance (MR) brain images while preventing filtering artifacts. MATERIALS AND METHODS: For the simulation experiments, we used multiple T2 -weighted images of an anatomical brain phantom. For in vivo experiments, successive multiecho MR brain images were acquired from five healthy subjects using a multiecho gradient-recalled-echo (MGRE) sequence with a 3T MRI system. Our denoising method is a nonlinear filter whose filtering weights are determined by tissue characteristics among pixels. The similarity of the tissue characteristics is measured based on the l2 -difference between two temporal decay signals. Both numerical and subjective evaluations were performed in order to compare the effectiveness of our denoising method with those of conventional filters, including Gaussian low-pass filter (LPF), anisotropic diffusion filter (ADF), and bilateral filter. Root-mean-square error (RMSE), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were used in the numerical evaluation. Five observers, including one radiologist, assessed the image quality and rated subjective scores in the subjective evaluation. RESULTS: Our denoising method significantly improves RMSE, SNR, and CNR of numerical phantom images, and CNR of in vivo brain images in comparison with conventional filters (P < 0.005). It also receives the highest scores for structure conspicuity (8.2 to 9.4 out of 10) and naturalness (9.2 to 9.8 out of 10) among the conventional filters in the subjective evaluation. CONCLUSION: This study demonstrates that high-SNR multiple T2 (*)-contrast MR images can be obtained using our denoising method based on tissue characteristics without noticeable artifacts.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherWiley-Liss-
dc.relation.isPartOfJOURNAL OF MAGNETIC RESONANCE IMAGING-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.0/kr/-
dc.subject.MESHAdult-
dc.subject.MESHAlgorithms*-
dc.subject.MESHArtifacts*-
dc.subject.MESHBrain/anatomy & histology*-
dc.subject.MESHBrain/diagnostic imaging*-
dc.subject.MESHComputer Simulation-
dc.subject.MESHContrast Media-
dc.subject.MESHHumans-
dc.subject.MESHImage Enhancement/methods*-
dc.subject.MESHImage Interpretation, Computer-Assisted/methods-
dc.subject.MESHMagnetic Resonance Imaging/instrumentation-
dc.subject.MESHMagnetic Resonance Imaging/methods*-
dc.subject.MESHMale-
dc.subject.MESHModels, Biological-
dc.subject.MESHModels, Statistical-
dc.subject.MESHPhantoms, Imaging-
dc.subject.MESHReproducibility of Results-
dc.subject.MESHSensitivity and Specificity-
dc.subject.MESHSignal-To-Noise Ratio-
dc.titleHigh-SNR multiple T2 (*)-contrast magnetic resonance imaging using a robust denoising method based on tissue characteristics-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine-
dc.contributor.departmentDept. of Radiology-
dc.contributor.googleauthorTaejoon Eo-
dc.contributor.googleauthorTaeseong Kim-
dc.contributor.googleauthorYohan Jun-
dc.contributor.googleauthorHongpyo Lee-
dc.contributor.googleauthorSung Soo Ahn-
dc.contributor.googleauthorDong‐Hyun Kim-
dc.contributor.googleauthorDosik Hwang-
dc.identifier.doi10.1002/jmri.25477-
dc.contributor.localIdA02234-
dc.relation.journalcodeJ01567-
dc.identifier.eissn1522-2586-
dc.identifier.pmid27635526-
dc.identifier.urlhttps://onlinelibrary.wiley.com/doi/abs/10.1002/jmri.25477-
dc.subject.keywordT2(*)-weighted-
dc.subject.keywordmultiple echoes-
dc.subject.keywordnoise reduction-
dc.subject.keywordspatial filter-
dc.subject.keywordtissue characteristics-
dc.contributor.alternativeNameAhn, Sung Soo-
dc.contributor.affiliatedAuthorAhn, Sung Soo-
dc.citation.volume45-
dc.citation.number6-
dc.citation.startPage1835-
dc.citation.endPage1845-
dc.identifier.bibliographicCitationJOURNAL OF MAGNETIC RESONANCE IMAGING, Vol.45(6) : 1835-1845, 2017-
dc.identifier.rimsid39017-
dc.type.rimsART-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.