0 165

Cited 1 times in

Ethyl-2, 5-dihydroxybenzoate displays dual activity by promoting osteoblast differentiation and inhibiting osteoclast differentiation

 Byeong-Ju Kwon  ;  Mi Hee Lee  ;  Min-Ah Koo  ;  Min Sung Kim  ;  Gyeung Mi Seon  ;  Jae-Jin Han  ;  Jong-Chul Park 
 Biochemical and Biophysical Research Communications, Vol.471(3) : 335-341, 2016 
Journal Title
 Biochemical and Biophysical Research Communications 
Issue Date
Animals ; Cell Differentiation/drug effects ; Cell Differentiation/physiology ; Dose-Response Relationship, Drug ; Humans ; Hydroxybenzoates/administration & dosage* ; Mesenchymal Stromal Cells/cytology* ; Mesenchymal Stromal Cells/drug effects ; Mesenchymal Stromal Cells/physiology ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Osteoblasts/cytology* ; Osteoblasts/drug effects ; Osteoblasts/physiology ; Osteoclasts/cytology* ; Osteoclasts/drug effects ; Osteoclasts/physiology ; Osteogenesis/drug effects ; Osteogenesis/physiology* ; RAW 264.7 Cells
Bone formation ; Bone remodeling ; Bone tissue engineering ; Ethyl-2, 5-dihyrdoxybenzoate ; Osteoblast differentiation ; Osteoclast differentiation
The interplay between bone-forming osteoblasts and bone-resorbing osteoclasts is essential for balanced bone remodeling. In this study, we evaluate the ability of ethyl-2, 5-dihyrdoxybenzoate (E-2, 5-DHB) to affect both osteoblast and osteoclast differentiation for bone regeneration. Osteogenic differentiation of human mesenchymal stem cells (hMSCs) was quantified by measuring alkaline phosphatase (ALP) activity and calcium deposition. To evaluate osteoclast differentiation, we investigated the effect of E-2, 5-DHB on RANKL-activated osteoclastogenesis in RAW 264.7 cells. E-2, 5-DHB enhanced ALP activity and inhibited RAW 264.7 cell osteoclastogenesis in vitro. To assess the in vivo activity of E-2, 5-DHB, hMSCs were delivered subcutaneosuly alone or in combination with E-2, 5-DHB in an alginate gel into the backs of nude-mice. Histological and immunohistochemical evaluation showed significantly higher calcium deposition in the E-2, 5-DHB group. Osteocalcin (OCN) was highly expressed in cells implanted in the gels containing E-2, 5-DHB. Our results suggest that E-2, 5-DHB can effectively enhance osteoblast differentiation and inhibit osteoclast differentiation both in vitro and in vivo. Understanding the dual function of E-2, 5-DHB on osteoblast and osteoclast differentiation will aid in future development of E-2, 5-DHB as a material for bone tissue engineering.
Full Text
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Medical Engineering (의학공학교실) > 1. Journal Papers
Yonsei Authors
구민아(Koo, Min-Ah) ORCID logo https://orcid.org/0000-0002-8671-1131
권병주(Kwon, Byeong-Ju) ORCID logo https://orcid.org/0000-0001-9916-0546
박종철(Park, Jong Chul) ORCID logo https://orcid.org/0000-0003-0083-5991
선경미(Seon, Gyeung Mi) ORCID logo https://orcid.org/0000-0002-0766-1106
이미희(Lee, Mi Hee) ORCID logo https://orcid.org/0000-0002-9630-7044
RIS (EndNote)
XLS (Excel)
사서에게 알리기


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.