251 458

Cited 0 times in

Potentiation of the inotropic effect of isoproterenol by naloxone in vitro : non-opiate receptor mechanism

Authors
 장철호 
Issue Date
2007
Description
Dept. of Medicine/박사
Abstract
[한글]

본 연구는 심근의 수축력을 항진시키는 효과를 가진 naloxone의 비아편성수용체 전달반응을 규명하고자 하였다. 심근수축력 측정, cyclic adenosine monophosphate (cAMP)의 측정, 전기생리학적인 방법들이 사용되었다. 수컷 기니픽 (300-400 g)을 sevoflurane으로 전신마취 한 상태에서 우심실 유두근(papillary muscle)을 적출하였다. 최대 장력 및 최대 장력 발생 속도(maximum rate of force development, dF/dt-max)로 심근수축력을 평가하였다. Isoproterenol, forskolin, isobutylmethylxanthine (IBMX)의 용량을 단계적으로 증가시키며 용량-반응 곡선을 얻었다. 각각의 isoproterenol, forskolin, IBMX를 EC50 용량으로 전처치 후 naloxone의 농도를 증가시키면서 수축력이 항진되는 것을 확인하였다. cAMP의 측정을 위해 기니픽의 심근을 분쇄하여 균질화한 뒤 원심분리하여 세포막단백질을 분리하였다. EC50의 isoproterenol 또는 forskolin 과 함께 naloxone을 투여하고 naloxone의 농도에 따른 cAMP 농도를 cAMP assay kit을 이용하여 측정하였다. 전기생리학적인 연구에서는 action potential, delayed outward K+ current (Ik), inward rectifier K+ current (Ik1) 와 L-type Ca2+ current (ICa, L)을 측정하였다. Naloxone (30 ?M)은 isoproterenol의 용량-반응 곡선을 좌측으로 이동시켰다. 또한 forskolin의 용량-반응 곡선을 3 ?M 까지는 좌측으로 이동시키고 10에서30 ?M의 농도에서는 현저하게 증가된 수축력을 보였다. 하지만, IBMX의 용량-반응 곡선에는 영향을 주지 않았다. Isoproterenol의 전처치 후에 10, 30, 300 ?M naloxone의 점진적인 투여는 용량에 따른 심근수축력의 증가를 보였다. EC50 용량의 isoproterenol 또는 forskolin과 naloxone을 같이 투여해도 cAMP의 농도에는 영향이 없었다. Isoproterenol 전처치 후 naloxone 30 ?M은 APD50과 APD90 을 연장시켰으나 크기나 안정막전위에는 영향이 없었다. Naloxone은 isoproterenol 전처치 군에서 peak outward Ik를 +80 mV에서 20±3% 감소시켰으나, -140mV에서 0 mV까지 Ik1에는 영향이 없었다. 또한, Naloxone은 막전위 +10 mV에서 ICa, L을 28±3% 감소시켰다. 따라서, isoproterenol 전처치후 naloxone이 심근 수축을 증가시키는 한 원인으로서 Ik의 억제에 의한 활동전위의 연장으로 세포내로의 Ca2+ 내향 전류가 증가하여 심근 수축이 증가하는 것으로 생각된다.







[영문]

The aim of this study was to define the mechanism of non-opiate receptor-mediated action of naloxone, which potentiates the inotropic effect of isoproterenol on the myocardium. Inotropic intervention, measurements of cyclic adenosine monophosphate (cAMP), and electrophysiological methods were used. Cardiac papillary muscle of the right ventricle was obtained from male guinea pigs (300-400 g) under sevoflurane general anesthesia. Peak force and maximum rate of force development (dF/dt-max) were measured. Cumulative concentration-response curves for isoproterenol as well as for forskolin and 3-isobutylmethylxanthine (IBMX) were obtained by increasing the concentration stepwise. The enhancement of contraction by naloxone in the presence of isoproterenol was further confirmed by sequentially applying increasing concentrations of naloxone in the presence of EC50 values of isoproterenol as well as forskolin and IBMX. For cAMP assays, cardiac muscle was homogenized and centrifuged to separate a membranous protein fraction. Naloxone-induced changes in cAMP in the presence of EC50 isoproterenol or forskolin were measured with cAMP assay kit. In electrophysiologic studies, action potential, delayed outward K+ current (Ik), inward rectifier K+ current (Ik1), and L-type Ca2+ current (ICa, L) were measured. Naloxone (30 µM) produced a leftward shift of the isoproterenol concentration-response curve (0.01-2 µM). While naloxone (30 µM) produced a leftward shift of the forskolin concentration-response curve (0.01-2 µM) until 3 µM concentration, markedly enhanced contraction was observed from 10 to 30 µM concentration ranges. Naloxone had no effect on the IBMX concentration-response curve. Concentration-related enhancement of contractile forces following sequential application of naloxone (10, 30, and 300 µM) in the presence of isoproterenol was shown. Naloxone did not alter the cAMP levels induced by application of EC50 isoproterenol or forskolin. Naloxone (30 µM), in the presence of isoproterenol, prolonged APD50 and APD90 while the amplitude and resting membrane potential was unchanged. Naloxone significantly reduced peak outward IK at +80 mV to 20±3% of isoproterenol-treated group, but did not alter the Ik1 from -140 mV to 0 mV. At a membrane potential of +10 mV, naloxone reduced the ICa, L by 28±3%. Thus, enhancement of myocardial contractility by naloxone in the presence of isoproterenol is, at least in part, likely due to inhibition of delayed outward K+ current, resulting in a secondary increase of inward Ca2+ current.
Files in This Item:
T010010.pdf Download
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Anesthesiology and Pain Medicine (마취통증의학교실) > 3. Dissertation
Yonsei Authors
Chang, Chul Ho(장철호) ORCID logo https://orcid.org/0000-0001-5647-8298
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/123819
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links