507 532

Cited 139 times in

Native Store-operated Ca2+ Influx Requires the Channel Function of Orai1 and TRPC1

Authors
 Min Seuk Kim  ;  Weizhong Zeng  ;  Joseph P. Yuan  ;  Dong Min Shin  ;  Paul F. Worley  ;  Shmuel Muallem 
Citation
 JOURNAL OF BIOLOGICAL CHEMISTRY, Vol.284(15) : 9733-9741, 2009 
Journal Title
JOURNAL OF BIOLOGICAL CHEMISTRY
ISSN
 0021-9258 
Issue Date
2009
MeSH
Calcium/chemistry* ; Calcium/metabolism ; Calcium Channels/metabolism* ; Calcium Signaling ; Cell Line ; Cell Membrane/metabolism ; Humans ; Jurkat Cells ; Models, Biological ; Mutagenesis ; Mutation ; ORAI1 Protein ; RNA/chemistry ; Signal Transduction ; TRPC Cation Channels/metabolism* ; Tubulin/chemistry
Abstract
With the discovery of STIM1 and Orai1 and gating of both TRPC and Orai1 channels by STIM1, a central question is the role of each of the channels in the native store-operated Ca(2+) influx (SOCs). Here, we used a strategy of knockdown of Orai1 and of TRPC1 alone and in combination and rescue by small interfering RNA-protected mutants (sm) of smOrai1 and smTRPC1 to demonstrate that in human embryonic kidney (HEK) cells, rescue of SOCs required co-transfection of low levels of both smOrai1 and smTRPC1. The pore mutant Orai1(E106Q) failed to rescue the SOCs in the presence or absence of TRPC1 and, surprisingly, the pore mutant TRPC1(F562A) failed to rescue the SOCs in the presence or absence of Orai1. TRPC1 is gated by electrostatic interaction between TRPC1(D639D,D640D) with STIM1(K684K, K685K). Strikingly, the channel-dead TRPC1(D639K,D640K) that can be rescued only by the STIM1(K684E,K685E) mutant could restore SOCs only when expressed with Orai1 and STIM1(K684E,K685E). Accordingly, we found a mutual requirement of Orai1 and TRPC1 for their interaction with the native STIM1 in HEK cells. By contrast, SOC and the CRAC current in Jurkat cells were inhibited by knockdown of Orai1 but were not influenced by knockdown on TRPC1 or TRPC3. These findings define the molecular makeup of the native SOCs in HEK cells and the role of a STIM1-Orai1-TRPC1 complex in SOC activity.
Files in This Item:
T200900912.pdf Download
DOI
10.1074/jbc.M808097200
Appears in Collections:
2. College of Dentistry (치과대학) > Dept. of Oral Biology (구강생물학교실) > 1. Journal Papers
Yonsei Authors
Shin, Dong Min(신동민) ORCID logo https://orcid.org/0000-0001-6042-0435
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/103662
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links