Cited 0 times in

Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo.

Authors
 Yumie Rhee  ;  Nicoletta Bivi  ;  Emily Farrow  ;  Virginia Lezcano  ;  Lilian I. Plotkin  ;  Kenneth E. White  ;  Teresita Bellido 
Citation
 BONE, Vol.49(4) : 636-643, 2011 
Journal Title
BONE
ISSN
 8756-3282 
Issue Date
2011
MeSH
Absorption ; Animals ; Bone and Bones/metabolism ; Extracellular Matrix Proteins/metabolism ; FibroblastGrowthFactors/blood ; FibroblastGrowthFactors/genetics* ; Kidney/metabolism ; Mice ; Mice, Inbred C57BL ; Models, Biological ; Osteocytes/metabolism* ; Phosphates/blood ; RNA, Messenger/genetics ; RNA, Messenger/metabolism ; Receptor,ParathyroidHormone, Type 1/metabolism* ; Signal Transduction* ; Up-Regulation
Keywords
Parathyroid hormone ; Osteocytes ; FGF23 ; Phosphate ; KLOTHO
Abstract
Mice with constitutive activation of parathyroid hormone (PTH) receptor signaling in osteocytes (DMP1-caPTHR1 transgenic mice) exhibit increased bone mass and remodeling, two of the recognized skeletal actions of PTH. Moreover, similar to PTH administration, DMP1-caPTHR1 mice exhibit decreased expression of the osteocyte-derived Wnt antagonist Sost/sclerostin. We now report that PTH receptor activation also regulates in vivo and in vitro the expression of fibroblast growth factor 23 (FGF23), an osteocyte product involved in inorganic phosphate (Pi) homeostasis and bone mineralization. Whole bones and osteocytes, but not osteoblasts, from DMP1-caPTHR1 mice exhibit elevated FGF23 expression, which is corrected in double transgenic mice overexpressing Sost in osteocytes. PTH, PTH related protein (PTHrP), or a cAMP stable analog, increase FGF23 transcripts in a time- and dose-dependent manner in osteocyte-containing calvarial cell cultures. Circulating FGF23 is also elevated in DMP1-caPTHR1 mice; however, plasma Pi or renal Pi reabsorption is not altered. Furthermore, the FGF23 receptor complex comprising FGFR1 and KLOTHO is expressed in osteoblastic cells; and FGFR1, GALNT3, as well as downstream targets of FGF23 signaling, are increased in osteocytes but not in osteoblasts from DMP1-caPTHR1 mice. Thus, PTH receptor signaling has the potential to modulate the endocrine and auto/paracrine functions of osteocytes by regulating FGF23 through cAMP- and Wnt-dependent mechanisms
Files in This Item:
T201103248.pdf Download
DOI
10.1016/j.bone.2011.06.025.
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers
Yonsei Authors
Rhee, Yumie(이유미) ORCID logo https://orcid.org/0000-0003-4227-5638
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/94092
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links