813 502

Cited 0 times in

Rapid, high-throughput detection of rifampin resistance and heteroresistance in Mycobacterium tuberculosis by use of sloppy molecular beacon melting temperature coding

DC Field Value Language
dc.contributor.author조상래-
dc.date.accessioned2014-12-19T17:03:25Z-
dc.date.available2014-12-19T17:03:25Z-
dc.date.issued2012-
dc.identifier.issn0095-1137-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/90695-
dc.description.abstractRifampin resistance in Mycobacterium tuberculosis is largely determined by mutations in an 80-bp rifampin resistance determining region (RRDR) of the rpoB gene. We developed a rapid single-well PCR assay to identify RRDR mutations. The assay uses sloppy molecular beacons to probe an asymmetric PCR of the M. tuberculosis RRDR by melting temperature (T(m)) analysis. A three-point T(m) code is generated which distinguishes wild-type from mutant RRDR DNA sequences in approximately 2 h. The assay was validated on synthetic oligonucleotide targets containing the 44 most common RRDR mutations. It was then tested on a panel of DNA extracted from 589 geographically diverse clinical M. tuberculosis cultures, including isolates with wild-type RRDR sequences and 25 different RRDR mutations. The assay detected 236/236 RRDR mutant sequences as mutant (sensitivity, 100%; 95% confidence interval [CI], 98 to 100%) and 353/353 RRDR wild-type sequences as wild type (specificity, 100%; 95% CI, 98.7 to 100%). The assay identified 222/225 rifampin-resistant isolates as rifampin resistant (sensitivity, 98.7%; 95% CI, 95.8 to 99.6%) and 335/336 rifampin-susceptible isolates as rifampin susceptible (specificity, 99.7%; 95% CI, 95.8 to 99.6%). All mutations were either individually identified or clustered into small mutation groups using the triple T(m) code. The assay accurately identified mixed (heteroresistant) samples and was shown analytically to detect RRDR mutations when present in at least 40% of the total M. tuberculosis DNA. This was at least as accurate as Sanger DNA sequencing. The assay was easy to use and well suited for high-throughput applications. This new sloppy molecular beacon assay should greatly simplify rifampin resistance testing in clinical laboratories.-
dc.description.statementOfResponsibilityopen-
dc.relation.isPartOfJOURNAL OF CLINICAL MICROBIOLOGY-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/2.0/kr/-
dc.subject.MESHAntitubercular Agents/pharmacology*-
dc.subject.MESHBacterial Proteins/genetics-
dc.subject.MESHDNA-Directed RNA Polymerases-
dc.subject.MESHDrug Resistance, Bacterial*-
dc.subject.MESHHumans-
dc.subject.MESHMicrobial Sensitivity Tests/methods-
dc.subject.MESHMolecular Diagnostic Techniques/methods*-
dc.subject.MESHMycobacterium tuberculosis/drug effects*-
dc.subject.MESHMycobacterium tuberculosis/genetics-
dc.subject.MESHMycobacterium tuberculosis/isolation & purification-
dc.subject.MESHOligonucleotide Probes/chemistry-
dc.subject.MESHOligonucleotide Probes/genetics-
dc.subject.MESHPolymerase Chain Reaction/methods-
dc.subject.MESHRifampin/pharmacology*-
dc.subject.MESHSensitivity and Specificity-
dc.subject.MESHTime Factors-
dc.subject.MESHTransition Temperature-
dc.subject.MESHTuberculosis/microbiology-
dc.titleRapid, high-throughput detection of rifampin resistance and heteroresistance in Mycobacterium tuberculosis by use of sloppy molecular beacon melting temperature coding-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Microbiology (미생물학)-
dc.contributor.googleauthorSoumitesh Chakravorty-
dc.contributor.googleauthorHarsheel Kothari-
dc.contributor.googleauthorBola Aladegbami-
dc.contributor.googleauthorEun Jin Cho-
dc.contributor.googleauthorJong Seok Lee-
dc.contributor.googleauthorSandy S. Roh-
dc.contributor.googleauthorHyunchul Kim-
dc.contributor.googleauthorHyungkyung Kwak-
dc.contributor.googleauthorEun Gae Lee-
dc.contributor.googleauthorSoo Hee Hwang-
dc.contributor.googleauthorPadmapriya P. Banada-
dc.contributor.googleauthorHassan Safi-
dc.contributor.googleauthorLaura E. Via-
dc.contributor.googleauthorSang-Nae Cho-
dc.contributor.googleauthorClifton E. Barry III-
dc.contributor.googleauthorDavid Alland-
dc.identifier.doi22535987-
dc.admin.authorfalse-
dc.admin.mappingfalse-
dc.contributor.localIdA03824-
dc.relation.journalcodeJ01325-
dc.identifier.eissn1098-660X-
dc.identifier.pmid22535987-
dc.subject.keywordAntitubercular Agents/pharmacology*-
dc.subject.keywordBacterial Proteins/genetics-
dc.subject.keywordDNA-Directed RNA Polymerases-
dc.subject.keywordDrug Resistance, Bacterial*-
dc.subject.keywordHumans-
dc.subject.keywordMicrobial Sensitivity Tests/methods-
dc.subject.keywordMolecular Diagnostic Techniques/methods*-
dc.subject.keywordMycobacterium tuberculosis/drug effects*-
dc.subject.keywordMycobacterium tuberculosis/genetics-
dc.subject.keywordMycobacterium tuberculosis/isolation & purification-
dc.subject.keywordOligonucleotide Probes/chemistry-
dc.subject.keywordOligonucleotide Probes/genetics-
dc.subject.keywordPolymerase Chain Reaction/methods-
dc.subject.keywordRifampin/pharmacology*-
dc.subject.keywordSensitivity and Specificity-
dc.subject.keywordTime Factors-
dc.subject.keywordTransition Temperature-
dc.subject.keywordTuberculosis/microbiology-
dc.contributor.alternativeNameCho, Sang Nae-
dc.contributor.affiliatedAuthorCho, Sang Nae-
dc.citation.volume50-
dc.citation.number7-
dc.citation.startPage2194-
dc.citation.endPage2202-
dc.identifier.bibliographicCitationJOURNAL OF CLINICAL MICROBIOLOGY, Vol.50(7) : 2194-2202, 2012-
dc.identifier.rimsid33474-
dc.type.rimsART-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Microbiology (미생물학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.