14 55

Cited 3 times in

In vivo Tracking of Human Neural Stem Cells Following Transplantation into a Rodent Model of Ischemic Stroke

 Da-Jeong Chang ; Hyeyoung Moon ; Jihwan Song ; Kwan Soo Hong ; Seung U. Kim ; Dong Ah Shin ; Seung-Hun Oh ; Tae-Sun Hwang ; Hyunseung Lee ; Iksoo Jeon ; Hong J. Lee ; Nayeon Lee ; Yong Hyun Lee 
 International Journal of Stem Cells, Vol.5(1) : 79~83, 2012 
Journal Title
 International Journal of Stem Cells 
Issue Date
BACKGROUND AND OBJECTIVES: Ischemic stroke caused by middle cerebral artery occlusion (MCAo) is the major type of stroke, but there are currently very limited options for cure. It has been shown that neural stem cells (NSCs) or neural precursor cells (NPCs) can survive and improve neurological deficits when they are engrafted in animal models of various neurological diseases. However, how the transplanted NSCs or NPCs are act in vivo in the injured or diseased brain is largely unknown. In this study, we utilized magnetic resonance imaging (MRI) techniques in order to understand the fates of human NSCs (HB1.F3) following transplantation into a rodent model of MCAo. METHODS AND RESULTS: HB1.F3 human NSCs were pre-labeled with ferumoxides (Feridex(®))-protamine sulfate complexes, which were visualized and examined by MRI up to 9 weeks after transplantation. Migration of the transplanted cells to the infarct area was further confirmed by histological methods. CONCLUSIONS: Based on these observations, we speculate that the transplanted NSCs have the extensive migratory ability to the injured site, which will in turn contribute to functional recovery in stroke. KEYWORDS: Feridex; Human neural stem cells (hNSCs); In vivo tracking; Ischemic stroke; Magnetic resonance imaging (MRI); Middle cerebral artery occlusion (MCAo)
Appears in Collections:
1. 연구논문 > 1. College of Medicine > Dept. of Neurosurgery
Yonsei Authors
사서에게 알리기
Files in This Item:
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.