586 738

Cited 37 times in

Glioma is formed by active Akt1 alone and promoted by active Rac1 in transgenic zebrafish

DC Field Value Language
dc.contributor.author김민희-
dc.contributor.author김세훈-
dc.contributor.author박승우-
dc.contributor.author임가람-
dc.contributor.author정인혜-
dc.contributor.author김은영-
dc.date.accessioned2014-12-18T08:37:23Z-
dc.date.available2014-12-18T08:37:23Z-
dc.date.issued2013-
dc.identifier.issn1522-8517-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/86650-
dc.description.abstractBackground Ongoing characterization of glioma has revealed that Akt signaling plays a crucial role in gliomagenesis. In mouse models, however, Akt alone was not sufficient to induce glioma. Methods We established transgenic zebrafish that overexpressed dominant-active (DA) human Akt1 or Rac1G12V (DARac1) at ptf1a domain and investigated transgenic phenotypes and mechanisms leading to gliomagenesis. Results Transgene expressions were spatiotemporally restricted without any developmental abnormality of embryos and persisted at cerebellum and medulla in adult zebrafish. DAAkt1 alone induced glioma (with visible bumps at the head), with incidences of 36.6% and 49% at 6 and 9 months, respectively. Histologically, gliomas showed various histologic grades, increased proliferation, and frequent invasion into the fourth ventricle. Preferential location of small tumors at periventricular area and coexpression of Her4 suggested that tumors originated from Ptf1a- and Her4-positive progenitor cells at ventricular zone. Gliomagenesis was principally mediated by activation of survival pathway through upregulation of survivin genes. Although DARac1 alone was incapable of gliomagenesis, when coexpressed with DAAkt1, gliomagenesis was accelerated, showing higher tumor incidences (62.0% and 73.3% at 6 and 9 months, respectively), advanced histologic grade, invasiveness, and shortened survival. DARac1 upregulated survivin2, cyclin D1, β-catenin, and snail1a but downregulated E-cadherin, indicating that DARac1 promotes gliomagenesis by enhancing proliferation, survival, and epithelial-to-mesenchymal transition. On pharmacologic tests, only Akt1/2 inhibitor effectively suppressed gliomagenesis, inhibited cellular proliferation, and induced apoptosis in established gliomas. Conclusions The zebrafish model reinforces the pivotal role of Akt signaling in gliomagenesis and suggests Rac1 as an important protein involved in progression.-
dc.description.statementOfResponsibilityopen-
dc.formatapplication/pdf-
dc.relation.isPartOfNEURO-ONCOLOGY-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/2.0/kr/-
dc.subject.MESHAnimals-
dc.subject.MESHAnimals, Genetically Modified-
dc.subject.MESHBrain Neoplasms/genetics-
dc.subject.MESHBrain Neoplasms/metabolism-
dc.subject.MESHBrain Neoplasms/pathology*-
dc.subject.MESHEmbryo, Nonmammalian/metabolism-
dc.subject.MESHEmbryo, Nonmammalian/pathology-
dc.subject.MESHFluorescent Antibody Technique-
dc.subject.MESHGene Expression Regulation, Developmental-
dc.subject.MESHGene Expression Regulation, Neoplastic*-
dc.subject.MESHGenes, Dominant-
dc.subject.MESHGlioma/genetics-
dc.subject.MESHGlioma/metabolism-
dc.subject.MESHGlioma/pathology*-
dc.subject.MESHHumans-
dc.subject.MESHImmunoenzyme Techniques-
dc.subject.MESHProto-Oncogene Proteins c-akt/genetics-
dc.subject.MESHProto-Oncogene Proteins c-akt/metabolism*-
dc.subject.MESHRNA, Messenger/genetics-
dc.subject.MESHReal-Time Polymerase Chain Reaction-
dc.subject.MESHReverse Transcriptase Polymerase Chain Reaction-
dc.subject.MESHSignal Transduction-
dc.subject.MESHTranscription Factors/metabolism-
dc.subject.MESHZebrafish/embryology-
dc.subject.MESHZebrafish/genetics*-
dc.subject.MESHrac1 GTP-Binding Protein/genetics-
dc.subject.MESHrac1 GTP-Binding Protein/metabolism*-
dc.titleGlioma is formed by active Akt1 alone and promoted by active Rac1 in transgenic zebrafish-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentMedical Research Center (임상의학연구센터)-
dc.contributor.googleauthorIn Hye Jung-
dc.contributor.googleauthorGa Lam Leem-
dc.contributor.googleauthorDawoon E. Jung-
dc.contributor.googleauthorMin Hee Kim-
dc.contributor.googleauthorEun Young Kim-
dc.contributor.googleauthorSe Hoon Kim-
dc.contributor.googleauthorHae-Chul Park-
dc.contributor.googleauthorSeung Woo Park-
dc.identifier.doi10.1093/neuonc/nos387-
dc.admin.authorfalse-
dc.admin.mappingfalse-
dc.contributor.localIdA00483-
dc.contributor.localIdA00610-
dc.contributor.localIdA01551-
dc.contributor.localIdA03353-
dc.contributor.localIdA03698-
dc.contributor.localIdA00812-
dc.relation.journalcodeJ02346-
dc.identifier.eissn1523-5866-
dc.identifier.pmid23325864-
dc.subject.keywordAnimals-
dc.subject.keywordAnimals, Genetically Modified-
dc.subject.keywordBrain Neoplasms/genetics-
dc.subject.keywordBrain Neoplasms/metabolism-
dc.subject.keywordBrain Neoplasms/pathology*-
dc.subject.keywordEmbryo, Nonmammalian/metabolism-
dc.subject.keywordEmbryo, Nonmammalian/pathology-
dc.subject.keywordFluorescent Antibody Technique-
dc.subject.keywordGene Expression Regulation, Developmental-
dc.subject.keywordGene Expression Regulation, Neoplastic*-
dc.subject.keywordGenes, Dominant-
dc.subject.keywordGlioma/genetics-
dc.subject.keywordGlioma/metabolism-
dc.subject.keywordGlioma/pathology*-
dc.subject.keywordHumans-
dc.subject.keywordImmunoenzyme Techniques-
dc.subject.keywordProto-Oncogene Proteins c-akt/genetics-
dc.subject.keywordProto-Oncogene Proteins c-akt/metabolism*-
dc.subject.keywordRNA, Messenger/genetics-
dc.subject.keywordReal-Time Polymerase Chain Reaction-
dc.subject.keywordReverse Transcriptase Polymerase Chain Reaction-
dc.subject.keywordSignal Transduction-
dc.subject.keywordTranscription Factors/metabolism-
dc.subject.keywordZebrafish/embryology-
dc.subject.keywordZebrafish/genetics*-
dc.subject.keywordrac1 GTP-Binding Protein/genetics-
dc.subject.keywordrac1 GTP-Binding Protein/metabolism*-
dc.contributor.alternativeNameKim, Min Hee-
dc.contributor.alternativeNameKim, Se Hoon-
dc.contributor.alternativeNamePark, Seung Woo-
dc.contributor.alternativeNameLeem, Ga Lam-
dc.contributor.alternativeNameJung, In Hye-
dc.contributor.affiliatedAuthorKim, Min Hee-
dc.contributor.affiliatedAuthorKim, Se Hoon-
dc.contributor.affiliatedAuthorPark, Seung Woo-
dc.contributor.affiliatedAuthorLeem, Ga Lam-
dc.contributor.affiliatedAuthorJung, In Hye-
dc.rights.accessRightsfree-
dc.citation.volume15-
dc.citation.number3-
dc.citation.startPage290-
dc.citation.endPage304-
dc.identifier.bibliographicCitationNEURO-ONCOLOGY, Vol.15(3) : 290-304, 2013-
dc.identifier.rimsid29120-
dc.type.rimsART-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Pathology (병리학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Others (기타) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.