Cited 0 times in 
Cited 0 times in 
Deep Learning-Based AI Model for Brain Tumor Segmentation in Digital Pathology and Terahertz Imaging
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Oh, Seung-jae | - |
| dc.contributor.author | Bark, Hyeonsang | - |
| dc.contributor.author | Maeng, Inhee | - |
| dc.contributor.author | Kang, Chul | - |
| dc.contributor.author | Kang, Seok-gu | - |
| dc.contributor.author | Ryu, Han-cheol | - |
| dc.contributor.author | Kim, Sehoon | - |
| dc.contributor.author | Ji, Youngbin | - |
| dc.date.accessioned | 2026-02-04T00:33:13Z | - |
| dc.date.available | 2026-02-04T00:33:13Z | - |
| dc.date.created | 2026-01-30 | - |
| dc.date.issued | 2025-12 | - |
| dc.identifier.issn | 1605-7422 | - |
| dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/210480 | - |
| dc.description.abstract | This study presents a deep learning-based AI model for brain tumor segmentation in digital pathology images. Using a transgenic mouse model and H&E-stained images, we developed and trained the model with DEEP:PHI, employing U-Net and attention U-Net architectures. The AI model facilitates accurate cancer detection, contributing to terahertz imaging-based diagnostics and enhancing real-time surgical decision-making with minimal pathologist intervention. | - |
| dc.language | English | - |
| dc.publisher | SPIE | - |
| dc.relation.isPartOf | Progress in Biomedical Optics and Imaging - Proceedings of SPIE | - |
| dc.relation.isPartOf | Progress in Biomedical Optics and Imaging - Proceedings of SPIE | - |
| dc.title | Deep Learning-Based AI Model for Brain Tumor Segmentation in Digital Pathology and Terahertz Imaging | - |
| dc.type | Article | - |
| dc.contributor.googleauthor | Oh, Seung-jae | - |
| dc.contributor.googleauthor | Bark, Hyeonsang | - |
| dc.contributor.googleauthor | Maeng, Inhee | - |
| dc.contributor.googleauthor | Kang, Chul | - |
| dc.contributor.googleauthor | Kang, Seok-gu | - |
| dc.contributor.googleauthor | Ryu, Han-cheol | - |
| dc.contributor.googleauthor | Kim, Sehoon | - |
| dc.contributor.googleauthor | Ji, Youngbin | - |
| dc.identifier.doi | 10.1117/12.3097796 | - |
| dc.relation.journalcode | J02551 | - |
| dc.identifier.url | https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13934/3097796/Deep-learning-based-AI-model-for-brain-tumor-segmentation-in/10.1117/12.3097796 | - |
| dc.contributor.affiliatedAuthor | Oh, Seung-jae | - |
| dc.contributor.affiliatedAuthor | Maeng, Inhee | - |
| dc.contributor.affiliatedAuthor | Kang, Seok-gu | - |
| dc.contributor.affiliatedAuthor | Kim, Sehoon | - |
| dc.identifier.scopusid | 2-s2.0-105025938572 | - |
| dc.citation.volume | 13934 | - |
| dc.identifier.bibliographicCitation | Progress in Biomedical Optics and Imaging - Proceedings of SPIE, Vol.13934, 2025-12 | - |
| dc.identifier.rimsid | 91446 | - |
| dc.type.rims | ART | - |
| dc.description.journalClass | 1 | - |
| dc.description.journalClass | 1 | - |
| dc.type.docType | Conference paper | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.identifier.articleno | 1393432 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.