11 31

Cited 0 times in

Cited 0 times in

Cost-effectiveness of chest radiography using artificial intelligence for lung cancer screening in South Korea

DC Field Value Language
dc.contributor.authorKim, Kyungyi-
dc.contributor.authorKim, Jung Hyun-
dc.contributor.authorShin, Jaeyong-
dc.contributor.authorKim, Man S.-
dc.contributor.authorPark, Sang-Hoon-
dc.contributor.authorChang, Jung Hyun-
dc.contributor.authorHan, Chang-Hoon-
dc.contributor.authorOh, Si Nae-
dc.date.accessioned2026-01-22T02:31:10Z-
dc.date.available2026-01-22T02:31:10Z-
dc.date.created2026-01-16-
dc.date.issued2025-11-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/210178-
dc.description.abstractArtificial intelligence (AI) shows promise in improving the accuracy and efficiency of lung cancer screening, but its economic value remains uncertain. We developed a decision-analytic model combining a decision tree and Markov model to evaluate five screening strategies in South Korea: no screening, chest X-ray (CXR), AI-assisted CXR, low-dose computed tomography (LDCT), and AI-assisted LDCT. We simulated hypothetical cohorts of 10,000 individuals, stratified by age group and smoking status to reflect the Korean population distribution, and projected their lifetime costs and quality-adjusted life years (QALYs). Analyses applied a 4.5% discount rate and a willingness-to-pay (WTP) threshold of $32,409.9 per QALY. AI-assisted CXR produced incremental cost-effectiveness ratio (ICER) of $8679-$10,030 per QALY, demonstrating cost-effectiveness across all age groups. CXR alone was less favorable, and LDCT-based strategies exceeded the willingness-to-pay (WTP) threshold. These findings suggest AI-assisted CXR offers a scalable, economically viable strategy for lung cancer screening, supporting its integration into national programs.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.relation.isPartOfSCIENTIFIC REPORTS-
dc.relation.isPartOfSCIENTIFIC REPORTS-
dc.subject.MESHAdult-
dc.subject.MESHAged-
dc.subject.MESHArtificial Intelligence* / economics-
dc.subject.MESHCost-Benefit Analysis*-
dc.subject.MESHEarly Detection of Cancer* / economics-
dc.subject.MESHEarly Detection of Cancer* / methods-
dc.subject.MESHFemale-
dc.subject.MESHHumans-
dc.subject.MESHLung Neoplasms* / diagnosis-
dc.subject.MESHLung Neoplasms* / diagnostic imaging-
dc.subject.MESHLung Neoplasms* / economics-
dc.subject.MESHMale-
dc.subject.MESHMarkov Chains-
dc.subject.MESHMass Screening / economics-
dc.subject.MESHMass Screening / methods-
dc.subject.MESHMiddle Aged-
dc.subject.MESHQuality-Adjusted Life Years-
dc.subject.MESHRadiography, Thoracic* / economics-
dc.subject.MESHRadiography, Thoracic* / methods-
dc.subject.MESHRepublic of Korea / epidemiology-
dc.subject.MESHTomography, X-Ray Computed / economics-
dc.titleCost-effectiveness of chest radiography using artificial intelligence for lung cancer screening in South Korea-
dc.typeArticle-
dc.contributor.googleauthorKim, Kyungyi-
dc.contributor.googleauthorKim, Jung Hyun-
dc.contributor.googleauthorShin, Jaeyong-
dc.contributor.googleauthorKim, Man S.-
dc.contributor.googleauthorPark, Sang-Hoon-
dc.contributor.googleauthorChang, Jung Hyun-
dc.contributor.googleauthorHan, Chang-Hoon-
dc.contributor.googleauthorOh, Si Nae-
dc.identifier.doi10.1038/s41598-025-29600-3-
dc.relation.journalcodeJ02646-
dc.identifier.eissn2045-2322-
dc.identifier.pmid41315843-
dc.contributor.affiliatedAuthorKim, Kyungyi-
dc.contributor.affiliatedAuthorShin, Jaeyong-
dc.contributor.affiliatedAuthorOh, Si Nae-
dc.identifier.scopusid2-s2.0-105026273266-
dc.identifier.wosid001651442500036-
dc.citation.volume15-
dc.citation.number1-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, Vol.15(1), 2025-11-
dc.identifier.rimsid91101-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.identifier.articleno45604-
Appears in Collections:
5. Graduate School of Transdisciplinary Health Sciences (융합보건의료대학원) > Graduate School of Transdisciplinary Health Sciences (융합보건의료대학원) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Preventive Medicine (예방의학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Research Institute (부설연구소) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.