0 25

Cited 0 times in

Cited 0 times in

Single-step prediction of inferior alveolar nerve injury after mandibular third-molar extraction using contrastive learning and Bayesian auto-tuned deep learning model

DC Field Value Language
dc.contributor.authorYoon, Kyubaek-
dc.contributor.authorChoi, Yiseul-
dc.contributor.authorLee, Myoungho-
dc.contributor.authorKim, Jaeyeon-
dc.contributor.authorKim, Jun-Young-
dc.contributor.authorKim, Jin-Woo-
dc.contributor.authorChoi, Jongeun-
dc.contributor.authorPark, Wonse-
dc.date.accessioned2025-12-26T06:34:50Z-
dc.date.available2025-12-26T06:34:50Z-
dc.date.created2025-12-11-
dc.date.issued2025-10-
dc.identifier.issn0250-832X-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/209680-
dc.description.abstractObjective Inferior alveolar nerve (IAN) injury is a critical complication of mandibular third-molar extraction. This study aimed to construct and evaluate a deep learning framework that integrates contrastive learning and Bayesian optimization to enhance predictive performance using cone-beam computed tomography (CBCT) and panoramic radiographs.Methods A retrospective dataset of 902 panoramic radiographs and 1,500 CBCT images was used. Five deep learning architectures (MobileNetV2, ResNet101D, Vision Transformer, Twins-SVT, and SSL-ResNet50) were trained with and without contrastive learning and Bayesian optimization. Model performance was evaluated using accuracy, F1-score, and comparison with oral and maxillofacial surgeons (OMFSs).Results Contrastive learning significantly improved the F1-scores across all models (e.g., MobileNetV2: 0.302 to 0.740; ResNet101D: 0.188 to 0.689; Vision Transformer: 0.275 to 0.704; Twins-SVT: 0.370 to 0.719; SSL-ResNet50: 0.109 to 0.576). Bayesian optimization further enhanced the F1-scores for MobileNetV2 (from 0.740 to 0.923), ResNet101D (from 0.689 to 0.857), Vision Transformer (from 0.704 to 0.871), Twins-SVT (from 0.719 to 0.857), and SSL-ResNet50 (from 0.576 to 0.875). The AI model outperformed OMFSs on CBCT cross-sectional images (F1-score: 0.923 vs. 0.667) but underperformed on panoramic radiographs (0.666 vs. 0.730).Conclusions The proposed single-step deep learning approach effectively predicts IAN injury, with contrastive learning addressing data imbalance and Bayesian optimization enhancing model performance. While artificial intelligence surpasses human performance on CBCT images, panoramic radiograph analysis still benefits from expert interpretation. Future work should focus on multi-center validation and explainable artificial intelligence for broader clinical adoption.-
dc.languageEnglish-
dc.publisherBritish Institute of Radiology-
dc.relation.isPartOfDENTOMAXILLOFACIAL RADIOLOGY-
dc.relation.isPartOfDENTOMAXILLOFACIAL RADIOLOGY-
dc.titleSingle-step prediction of inferior alveolar nerve injury after mandibular third-molar extraction using contrastive learning and Bayesian auto-tuned deep learning model-
dc.typeArticle-
dc.contributor.googleauthorYoon, Kyubaek-
dc.contributor.googleauthorChoi, Yiseul-
dc.contributor.googleauthorLee, Myoungho-
dc.contributor.googleauthorKim, Jaeyeon-
dc.contributor.googleauthorKim, Jun-Young-
dc.contributor.googleauthorKim, Jin-Woo-
dc.contributor.googleauthorChoi, Jongeun-
dc.contributor.googleauthorPark, Wonse-
dc.identifier.doi10.1093/dmfr/twaf069-
dc.relation.journalcodeJ00704-
dc.identifier.eissn1476-542X-
dc.identifier.pmid41014015-
dc.identifier.urlhttps://academic.oup.com/dmfr/advance-article/doi/10.1093/dmfr/twaf069/8266699-
dc.subject.keywordmolar-
dc.subject.keywordthird-
dc.subject.keywordoral surgical procedures-
dc.subject.keywordmandibular nerve-
dc.subject.keywordcone-beam computed tomography-
dc.subject.keyworddeep learning-
dc.contributor.affiliatedAuthorChoi, Yiseul-
dc.contributor.affiliatedAuthorLee, Myoungho-
dc.contributor.affiliatedAuthorKim, Jaeyeon-
dc.contributor.affiliatedAuthorKim, Jun-Young-
dc.contributor.affiliatedAuthorPark, Wonse-
dc.identifier.wosid001599715700001-
dc.identifier.bibliographicCitationDENTOMAXILLOFACIAL RADIOLOGY, 2025-10-
dc.identifier.rimsid90397-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthormolar-
dc.subject.keywordAuthorthird-
dc.subject.keywordAuthororal surgical procedures-
dc.subject.keywordAuthormandibular nerve-
dc.subject.keywordAuthorcone-beam computed tomography-
dc.subject.keywordAuthordeep learning-
dc.type.docTypeArticle; Early Access-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryDentistry, Oral Surgery & Medicine-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalResearchAreaDentistry, Oral Surgery & Medicine-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
Appears in Collections:
2. College of Dentistry (치과대학) > Dept. of Advanced General Dentistry (통합치의학과) > 1. Journal Papers
2. College of Dentistry (치과대학) > Dept. of Oral and Maxillofacial Surgery (구강악안면외과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.