8 36

Cited 15 times in

Cited 0 times in

Magnetically reshapable 3D multi-electrode arrays of liquid metals for electrophysiological analysis of brain organoids

Authors
 Kim, Enji  ;  Jeong, Eunseon  ;  Hong, Yeon-Mi  ;  Jeong, Inhea  ;  Kim, Junghoon  ;  Kwon, Yong Won  ;  Park, Young-Geun  ;  Lee, Jiin  ;  Choi, Suah  ;  Kim, Ju-Young  ;  Lee, Jae-Hyun  ;  Cho, Seung-Woo  ;  Park, Jang-Ung 
Citation
 NATURE COMMUNICATIONS, Vol.16(1), 2025-02 
Article Number
 2011 
Journal Title
NATURE COMMUNICATIONS
ISSN
 2041-1723 
Issue Date
2025-02
MeSH
Animals ; Brain* / cytology ; Brain* / physiology ; Electrodes ; Electrophysiological Phenomena* ; Electrophysiology* / instrumentation ; Electrophysiology* / methods ; Magnetic Fields ; Metals* / chemistry ; Mice ; Organoids* / physiology ; Printing, Three-Dimensional
Keywords
Gallium ; Indium ; Nestin ; Protein ; Transcription Factor Pax6 ; Metals ; Gallium ; Indium ; Nestin ; Protein ; Transcription Factor Pax6 ; Tuj1 Protein ; Unclassified Drug ; Metal ; Brain ; Electrode ; Magnetic Field ; Spatiotemporal Analysis ; Three-dimensional Modeling ; Article ; Biocompatibility ; Cell Viability ; Cerebral Organoid ; Controlled Study ; Cytoarchitecture ; Cytotoxicity Test ; Electrophysiological Procedures ; Gene Expression ; Hardness ; Human ; Human Cell ; Nerve Cell Differentiation ; Nervous System Development ; Protein Expression ; Real Time Polymerase Chain Reaction ; Three Dimensional Printing ; Animal ; Chemistry ; Cytology ; Electrophysiology ; Mouse ; Organoid ; Physiology ; Animals ; Brain ; Electrodes ; Electrophysiological Phenomena ; Humans ; Magnetic Fields ; Metals ; Mice ; Organoids ; Printing, Three-dimensional
Abstract
To comprehend the volumetric neural connectivity of a brain organoid, it is crucial to monitor the spatiotemporal electrophysiological signals within the organoid, known as intra-organoid signals. However, previous methods risked damaging the three-dimensional (3D) cytoarchitecture of organoids, either through sectioning or inserting rigid needle-like electrodes. Also, the limited numbers of electrodes in fixed positions with non-adjustable electrode shapes were insufficient for examining the complex neural activity throughout the organoid. Herein, we present a magnetically reshapable 3D multi-electrode array (MEA) using direct printing of liquid metals for electrophysiological analysis of brain organoids. The adaptable distribution and the softness of these printed electrodes facilitate the spatiotemporal recording of intra-organoid signals. Furthermore, the unique capability to reshape these soft electrodes within the organoid using magnetic fields allows a single electrode in the MEA to record from multiple points, effectively increasing the recording site density without the need for additional electrodes.
Files in This Item:
88249.pdf Download
DOI
10.1038/s41467-024-55752-3
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Neurosurgery (신경외과학교실) > 1. Journal Papers
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/208704
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links