0 15

Cited 0 times in

Cited 0 times in

Quantitative and qualitative assessment of ultra-low-dose paranasal sinus CT using deep learning image reconstruction: a comparison with hybrid iterative reconstruction

DC Field Value Language
dc.contributor.authorOtgonbaatar, Chuluunbaatar-
dc.contributor.authorLee, Dakyong-
dc.contributor.authorChoi, Juneho-
dc.contributor.authorJang, Heijung-
dc.contributor.authorShim, Hackjoon-
dc.contributor.authorRyoo, Inseon-
dc.contributor.authorJung, Hye Na-
dc.contributor.authorSuh, Sangil-
dc.date.accessioned2025-11-06T00:19:21Z-
dc.date.available2025-11-06T00:19:21Z-
dc.date.created2025-08-28-
dc.date.issued2025-06-
dc.identifier.issn0938-7994-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/208321-
dc.description.abstractObjectives This study aimed to evaluate the quantitative and qualitative performances of ultra-low-dose computed tomography (CT) with deep learning image reconstruction (DLR) compared with those of hybrid iterative reconstruction (IR) for preoperative paranasal sinus (PNS) imaging. Materials and methods This retrospective analysis included 132 patients who underwent non-contrast ultra-low-dose sinus CT (0.03 mSv). Images were reconstructed using hybrid IR and DLR. Objective image quality metrics, including image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), noise power spectrum (NPS), and no-reference perceptual image sharpness, were assessed. Two board-certified radiologists independently performed subjective image quality evaluations. Results The ultra-low-dose CT protocol achieved a low radiation dose (effective dose: 0.03 mSv). DLR showed significantly lower image noise (28.62 +/- 4.83 Hounsfield units) compared to hybrid IR (140.70 +/- 16.04, p < 0.001), with DLR yielding smoother and more uniform images. DLR demonstrated significantly improved SNR (22.47 +/- 5.82 vs 9.14 +/- 2.45, p < 0.001) and CNR (71.88 +/- 14.03 vs 11.81 +/- 1.50, p < 0.001). NPS analysis revealed that DLR reduced the noise magnitude and NPS peak values. Additionally, DLR demonstrated significantly sharper images (no-reference perceptual sharpness metric: 0.56 +/- 0.04) compared to hybrid IR (0.36 +/- 0.01). Radiologists rated DLR as superior in overall image quality, bone structure visualization, and diagnostic confidence compared to hybrid IR at ultra-low-dose CT. Conclusion DLR significantly outperformed hybrid IR in ultra-low-dose PNS CT by reducing image noise, improving SNR and CNR, enhancing image sharpness, and maintaining critical anatomical visualization, demonstrating its potential for effective preoperative planning with minimal radiation exposure.-
dc.languageEnglish-
dc.publisherSpringer International-
dc.relation.isPartOfEUROPEAN RADIOLOGY-
dc.relation.isPartOfEUROPEAN RADIOLOGY-
dc.titleQuantitative and qualitative assessment of ultra-low-dose paranasal sinus CT using deep learning image reconstruction: a comparison with hybrid iterative reconstruction-
dc.typeArticle-
dc.contributor.googleauthorOtgonbaatar, Chuluunbaatar-
dc.contributor.googleauthorLee, Dakyong-
dc.contributor.googleauthorChoi, Juneho-
dc.contributor.googleauthorJang, Heijung-
dc.contributor.googleauthorShim, Hackjoon-
dc.contributor.googleauthorRyoo, Inseon-
dc.contributor.googleauthorJung, Hye Na-
dc.contributor.googleauthorSuh, Sangil-
dc.identifier.doi10.1007/s00330-025-11763-2-
dc.relation.journalcodeJ00851-
dc.identifier.eissn1432-1084-
dc.identifier.pmid40514598-
dc.identifier.urlhttps://link.springer.com/article/10.1007/s00330-025-11763-2-
dc.subject.keywordComputed tomography-
dc.subject.keywordParanasal sinuses-
dc.subject.keywordImage reconstruction-
dc.subject.keywordImage quality-
dc.contributor.affiliatedAuthorShim, Hackjoon-
dc.identifier.scopusid2-s2.0-105008343796-
dc.identifier.wosid001508198700001-
dc.identifier.bibliographicCitationEUROPEAN RADIOLOGY, 2025-06-
dc.identifier.rimsid89231-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorComputed tomography-
dc.subject.keywordAuthorParanasal sinuses-
dc.subject.keywordAuthorImage reconstruction-
dc.subject.keywordAuthorImage quality-
dc.subject.keywordPlusCOMPUTED-TOMOGRAPHY-
dc.subject.keywordPlusTUBE VOLTAGE-
dc.subject.keywordPlusRADIATION-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusANGIOGRAPHY-
dc.subject.keywordPlusCANCER-
dc.type.docTypeArticle; Early Access-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
Appears in Collections:
1. College of Medicine (의과대학) > Yonsei Biomedical Research Center (연세의생명연구원) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.