0 14

Cited 5 times in

Cited 0 times in

AI model using CT-based imaging biomarkers to predict hepatocellular carcinoma in patients with chronic hepatitis B

DC Field Value Language
dc.contributor.authorShin, Hyunjae-
dc.contributor.authorHur, Moon Haeng-
dc.contributor.authorSong, Byeong Geun-
dc.contributor.authorPark, Soo Young-
dc.contributor.authorKim, Gi-Ae-
dc.contributor.authorChoi, Gwanghyeon-
dc.contributor.authorNam, Joon Yeul-
dc.contributor.authorKim, Minseok Albert-
dc.contributor.authorPark, Youngsu-
dc.contributor.authorKo, Yunmi-
dc.contributor.authorPark, Jeayeon-
dc.contributor.authorLee, Han Ah-
dc.contributor.authorChung, Sung Won-
dc.contributor.authorChoi, Na Ryung-
dc.contributor.authorPark, Min Kyung-
dc.contributor.authorBin Lee, Yun-
dc.contributor.authorSinn, Dong Hyun-
dc.contributor.authorKim, Seung Up-
dc.contributor.authorKim, Hwi Young-
dc.contributor.authorKim, Jong-Min-
dc.contributor.authorPark, Sang Joon-
dc.contributor.authorLee, Hyung-Chul-
dc.contributor.authorLee, Dong Ho-
dc.contributor.authorChung, Jin Wook-
dc.contributor.authorKim, Yoon Jun-
dc.contributor.authorYoon, Jung-Hwan-
dc.contributor.authorLee, Jeong-Hoon-
dc.date.accessioned2025-10-24T06:01:56Z-
dc.date.available2025-10-24T06:01:56Z-
dc.date.created2025-10-14-
dc.date.issued2025-06-
dc.identifier.issn0168-8278-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/207870-
dc.description.abstractBackground & Aims: Various hepatocellular carcinoma (HCC) prediction models have been proposed for patients with chronic hepatitis B (CHB) using clinical variables. We aimed to develop an artificial intelligence (AI)-based HCC prediction model by incorporating imaging biomarkers derived from abdominal computed tomography (CT) images along with clinical variables. Methods: An AI prediction model employing a gradient-boosting machine algorithm was developed utilizing imaging biomarkers extracted by DeepFore, a deep learning-based CT auto-segmentation software. The derivation cohort (n = 5,585) was randomly divided into the training and internal validation sets at a 3:1 ratio. The external validation cohort included 2,883 patients. Six imaging biomarkers (i.e. abdominal visceral fat-total fat volume ratio, total fat-trunk volume ratio, spleen volume, liver volume, liver-spleen Hounsfield unit ratio, and muscle Hounsfield unit) and eight clinical variables were selected as the main variables of our model, PLAN-B-DF. Results: In the internal validation set (median follow-up duration = 7.4 years), PLAN-B-DF demonstrated an excellent predictive performance with a c-index of 0.91 and good calibration function (p = 0.78 by the Hosmer-Lemeshow test). In the external validation cohort (median follow-up duration = 4.6 years), PLAN-B-DF showed a significantly better discrimination function compared to previous models, including PLAN-B, PAGE-B, modified PAGE-B, and CU-HCC (c-index, 0.89 vs. 0.65-0.78; all p <0.001), and maintained a good calibration function (p = 0.42 by the Hosmer-Lemeshow test). When patients were classified into four groups according to the risk probability calculated by PLAN-B-DF, the 10-year cumulative HCC incidence was 0.0%, 0.4%, 16.0%, and 46.2% in the minimal-, low-, intermediate-, and high-risk groups, respectively. Conclusion: This AI prediction model, integrating deep learning-based auto-segmentation of CT images, offers improved performance in predicting HCC risk among patients with CHB compared to previous models. (c) 2024 European Association for the Study of the Liver. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.-
dc.languageEnglish-
dc.publisherElsevier-
dc.relation.isPartOfJOURNAL OF HEPATOLOGY-
dc.relation.isPartOfJOURNAL OF HEPATOLOGY-
dc.subject.MESHAdult-
dc.subject.MESHArtificial Intelligence*-
dc.subject.MESHCarcinoma, Hepatocellular* / diagnosis-
dc.subject.MESHCarcinoma, Hepatocellular* / diagnostic imaging-
dc.subject.MESHCarcinoma, Hepatocellular* / epidemiology-
dc.subject.MESHCarcinoma, Hepatocellular* / etiology-
dc.subject.MESHDeep Learning-
dc.subject.MESHFemale-
dc.subject.MESHHepatitis B, Chronic* / complications-
dc.subject.MESHHumans-
dc.subject.MESHLiver Neoplasms* / diagnosis-
dc.subject.MESHLiver Neoplasms* / diagnostic imaging-
dc.subject.MESHLiver Neoplasms* / epidemiology-
dc.subject.MESHLiver Neoplasms* / etiology-
dc.subject.MESHMale-
dc.subject.MESHMiddle Aged-
dc.subject.MESHPredictive Value of Tests-
dc.subject.MESHTomography, X-Ray Computed* / methods-
dc.titleAI model using CT-based imaging biomarkers to predict hepatocellular carcinoma in patients with chronic hepatitis B-
dc.typeArticle-
dc.contributor.googleauthorShin, Hyunjae-
dc.contributor.googleauthorHur, Moon Haeng-
dc.contributor.googleauthorSong, Byeong Geun-
dc.contributor.googleauthorPark, Soo Young-
dc.contributor.googleauthorKim, Gi-Ae-
dc.contributor.googleauthorChoi, Gwanghyeon-
dc.contributor.googleauthorNam, Joon Yeul-
dc.contributor.googleauthorKim, Minseok Albert-
dc.contributor.googleauthorPark, Youngsu-
dc.contributor.googleauthorKo, Yunmi-
dc.contributor.googleauthorPark, Jeayeon-
dc.contributor.googleauthorLee, Han Ah-
dc.contributor.googleauthorChung, Sung Won-
dc.contributor.googleauthorChoi, Na Ryung-
dc.contributor.googleauthorPark, Min Kyung-
dc.contributor.googleauthorBin Lee, Yun-
dc.contributor.googleauthorSinn, Dong Hyun-
dc.contributor.googleauthorKim, Seung Up-
dc.contributor.googleauthorKim, Hwi Young-
dc.contributor.googleauthorKim, Jong-Min-
dc.contributor.googleauthorPark, Sang Joon-
dc.contributor.googleauthorLee, Hyung-Chul-
dc.contributor.googleauthorLee, Dong Ho-
dc.contributor.googleauthorChung, Jin Wook-
dc.contributor.googleauthorKim, Yoon Jun-
dc.contributor.googleauthorYoon, Jung-Hwan-
dc.contributor.googleauthorLee, Jeong-Hoon-
dc.identifier.doi10.1016/j.jhep.2024.12.029-
dc.relation.journalcodeJ01441-
dc.identifier.eissn1600-0641-
dc.identifier.pmid39710148-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0168827824027843-
dc.subject.keywordradiologic biomarker-
dc.subject.keyworddeep learning-
dc.subject.keywordvisceral fat-
dc.subject.keywordmyosteatosis-
dc.subject.keywordsegmentation-
dc.contributor.affiliatedAuthorKim, Seung Up-
dc.identifier.scopusid2-s2.0-85217903846-
dc.identifier.wosid001521698300038-
dc.citation.volume82-
dc.citation.number6-
dc.citation.startPage1080-
dc.citation.endPage1088-
dc.identifier.bibliographicCitationJOURNAL OF HEPATOLOGY, Vol.82(6) : 1080-1088, 2025-06-
dc.identifier.rimsid89852-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorradiologic biomarker-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthorvisceral fat-
dc.subject.keywordAuthormyosteatosis-
dc.subject.keywordAuthorsegmentation-
dc.subject.keywordPlusVISCERAL FAT-
dc.subject.keywordPlusSCORING SYSTEM-
dc.subject.keywordPlusRISK-
dc.subject.keywordPlusLIVER-
dc.subject.keywordPlusADIPOSITY-
dc.subject.keywordPlusOBESITY-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryGastroenterology & Hepatology-
dc.relation.journalResearchAreaGastroenterology & Hepatology-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.