Cited 0 times in 
Cited 0 times in 
Enhancing the Predictions of Cytomegalovirus Infection in Severe Ulcerative Colitis Using a Deep Learning Ensemble Model: Development and Validation Study
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kim, Jeong Heon | - |
| dc.contributor.author | Choe, A. Reum | - |
| dc.contributor.author | Byeon, Ju Ran | - |
| dc.contributor.author | Park, Yehyun | - |
| dc.contributor.author | Song, Eun Mi | - |
| dc.contributor.author | Kim, Seong-Eun | - |
| dc.contributor.author | Jeong, Eui Sun | - |
| dc.contributor.author | Lee, Rena | - |
| dc.contributor.author | Kim, Jin Sung | - |
| dc.contributor.author | Ahn, So Hyun | - |
| dc.contributor.author | Jung, Sung Ae | - |
| dc.date.accessioned | 2025-10-24T06:01:55Z | - |
| dc.date.available | 2025-10-24T06:01:55Z | - |
| dc.date.created | 2025-10-14 | - |
| dc.date.issued | 2025-07 | - |
| dc.identifier.issn | 2291-9694 | - |
| dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/207865 | - |
| dc.description.abstract | Background: Cytomegalovirus (CMV) reactivation in patients with severe ulcerative colitis (UC) leads to worse outcomes; yet, early detection remains challenging due to the reliance on time-intensive biopsy procedures. Objective: This study explores the use of deep learning to differentiate CMV from severe UC through endoscopic imaging, offering a potential noninvasive diagnostic tool. Methods: We analyzed 86 endoscopic images using an ensemble of deep learning models, including DenseNet (Densely Connected Convolutional Network) 121 pretrained on ImageNet. Advanced preprocessing and test-time augmentation (TTA) were applied to optimize model performance. The models were evaluated using metrics such as accuracy, precision, recall, F1-score, and area under the curve. Results: The ensemble approach, enhanced by TTA, achieved high performance, with an accuracy of 0.836, precision of 0.850, recall of 0.904, and an F1-score of 0.875. Models without TTA showed a significant drop in these metrics, emphasizing TTA's importance in improving classification performance. Conclusions: This study demonstrates that deep learning models can effectively distinguish CMV from severe UC in endoscopic images, paving the way for early, noninvasive diagnosis and improved patient care. | - |
| dc.language | English | - |
| dc.publisher | JMIR Publications | - |
| dc.relation.isPartOf | JMIR MEDICAL INFORMATICS | - |
| dc.relation.isPartOf | JMIR MEDICAL INFORMATICS | - |
| dc.subject.MESH | Colitis, Ulcerative* / complications | - |
| dc.subject.MESH | Colitis, Ulcerative* / virology | - |
| dc.subject.MESH | Cytomegalovirus | - |
| dc.subject.MESH | Cytomegalovirus Infections* / diagnosis | - |
| dc.subject.MESH | Deep Learning* | - |
| dc.subject.MESH | Female | - |
| dc.subject.MESH | Humans | - |
| dc.subject.MESH | Male | - |
| dc.title | Enhancing the Predictions of Cytomegalovirus Infection in Severe Ulcerative Colitis Using a Deep Learning Ensemble Model: Development and Validation Study | - |
| dc.type | Article | - |
| dc.contributor.googleauthor | Kim, Jeong Heon | - |
| dc.contributor.googleauthor | Choe, A. Reum | - |
| dc.contributor.googleauthor | Byeon, Ju Ran | - |
| dc.contributor.googleauthor | Park, Yehyun | - |
| dc.contributor.googleauthor | Song, Eun Mi | - |
| dc.contributor.googleauthor | Kim, Seong-Eun | - |
| dc.contributor.googleauthor | Jeong, Eui Sun | - |
| dc.contributor.googleauthor | Lee, Rena | - |
| dc.contributor.googleauthor | Kim, Jin Sung | - |
| dc.contributor.googleauthor | Ahn, So Hyun | - |
| dc.contributor.googleauthor | Jung, Sung Ae | - |
| dc.identifier.doi | 10.2196/64987 | - |
| dc.relation.journalcode | J03664 | - |
| dc.identifier.eissn | 2291-9694 | - |
| dc.identifier.pmid | 40590844 | - |
| dc.subject.keyword | cytomegalovirus | - |
| dc.subject.keyword | ulcerative colitis | - |
| dc.subject.keyword | deep learning | - |
| dc.subject.keyword | endoscopy | - |
| dc.subject.keyword | classification | - |
| dc.contributor.affiliatedAuthor | Kim, Jeong Heon | - |
| dc.contributor.affiliatedAuthor | Kim, Jin Sung | - |
| dc.identifier.scopusid | 2-s2.0-105011860951 | - |
| dc.identifier.wosid | 001529678200001 | - |
| dc.citation.volume | 13 | - |
| dc.identifier.bibliographicCitation | JMIR MEDICAL INFORMATICS, Vol.13, 2025-07 | - |
| dc.identifier.rimsid | 89870 | - |
| dc.type.rims | ART | - |
| dc.description.journalClass | 1 | - |
| dc.description.journalClass | 1 | - |
| dc.subject.keywordAuthor | cytomegalovirus | - |
| dc.subject.keywordAuthor | ulcerative colitis | - |
| dc.subject.keywordAuthor | deep learning | - |
| dc.subject.keywordAuthor | endoscopy | - |
| dc.subject.keywordAuthor | classification | - |
| dc.subject.keywordPlus | INFLAMMATORY-BOWEL-DISEASE | - |
| dc.subject.keywordPlus | RISK-FACTORS | - |
| dc.subject.keywordPlus | SURGERY | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalWebOfScienceCategory | Medical Informatics | - |
| dc.relation.journalResearchArea | Medical Informatics | - |
| dc.identifier.articleno | e64987 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.