4 14

Cited 0 times in

Cited 0 times in

Enhancing the Predictions of Cytomegalovirus Infection in Severe Ulcerative Colitis Using a Deep Learning Ensemble Model: Development and Validation Study

DC Field Value Language
dc.contributor.authorKim, Jeong Heon-
dc.contributor.authorChoe, A. Reum-
dc.contributor.authorByeon, Ju Ran-
dc.contributor.authorPark, Yehyun-
dc.contributor.authorSong, Eun Mi-
dc.contributor.authorKim, Seong-Eun-
dc.contributor.authorJeong, Eui Sun-
dc.contributor.authorLee, Rena-
dc.contributor.authorKim, Jin Sung-
dc.contributor.authorAhn, So Hyun-
dc.contributor.authorJung, Sung Ae-
dc.date.accessioned2025-10-24T06:01:55Z-
dc.date.available2025-10-24T06:01:55Z-
dc.date.created2025-10-14-
dc.date.issued2025-07-
dc.identifier.issn2291-9694-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/207865-
dc.description.abstractBackground: Cytomegalovirus (CMV) reactivation in patients with severe ulcerative colitis (UC) leads to worse outcomes; yet, early detection remains challenging due to the reliance on time-intensive biopsy procedures. Objective: This study explores the use of deep learning to differentiate CMV from severe UC through endoscopic imaging, offering a potential noninvasive diagnostic tool. Methods: We analyzed 86 endoscopic images using an ensemble of deep learning models, including DenseNet (Densely Connected Convolutional Network) 121 pretrained on ImageNet. Advanced preprocessing and test-time augmentation (TTA) were applied to optimize model performance. The models were evaluated using metrics such as accuracy, precision, recall, F1-score, and area under the curve. Results: The ensemble approach, enhanced by TTA, achieved high performance, with an accuracy of 0.836, precision of 0.850, recall of 0.904, and an F1-score of 0.875. Models without TTA showed a significant drop in these metrics, emphasizing TTA's importance in improving classification performance. Conclusions: This study demonstrates that deep learning models can effectively distinguish CMV from severe UC in endoscopic images, paving the way for early, noninvasive diagnosis and improved patient care.-
dc.languageEnglish-
dc.publisherJMIR Publications-
dc.relation.isPartOfJMIR MEDICAL INFORMATICS-
dc.relation.isPartOfJMIR MEDICAL INFORMATICS-
dc.subject.MESHColitis, Ulcerative* / complications-
dc.subject.MESHColitis, Ulcerative* / virology-
dc.subject.MESHCytomegalovirus-
dc.subject.MESHCytomegalovirus Infections* / diagnosis-
dc.subject.MESHDeep Learning*-
dc.subject.MESHFemale-
dc.subject.MESHHumans-
dc.subject.MESHMale-
dc.titleEnhancing the Predictions of Cytomegalovirus Infection in Severe Ulcerative Colitis Using a Deep Learning Ensemble Model: Development and Validation Study-
dc.typeArticle-
dc.contributor.googleauthorKim, Jeong Heon-
dc.contributor.googleauthorChoe, A. Reum-
dc.contributor.googleauthorByeon, Ju Ran-
dc.contributor.googleauthorPark, Yehyun-
dc.contributor.googleauthorSong, Eun Mi-
dc.contributor.googleauthorKim, Seong-Eun-
dc.contributor.googleauthorJeong, Eui Sun-
dc.contributor.googleauthorLee, Rena-
dc.contributor.googleauthorKim, Jin Sung-
dc.contributor.googleauthorAhn, So Hyun-
dc.contributor.googleauthorJung, Sung Ae-
dc.identifier.doi10.2196/64987-
dc.relation.journalcodeJ03664-
dc.identifier.eissn2291-9694-
dc.identifier.pmid40590844-
dc.subject.keywordcytomegalovirus-
dc.subject.keywordulcerative colitis-
dc.subject.keyworddeep learning-
dc.subject.keywordendoscopy-
dc.subject.keywordclassification-
dc.contributor.affiliatedAuthorKim, Jeong Heon-
dc.contributor.affiliatedAuthorKim, Jin Sung-
dc.identifier.scopusid2-s2.0-105011860951-
dc.identifier.wosid001529678200001-
dc.citation.volume13-
dc.identifier.bibliographicCitationJMIR MEDICAL INFORMATICS, Vol.13, 2025-07-
dc.identifier.rimsid89870-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorcytomegalovirus-
dc.subject.keywordAuthorulcerative colitis-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthorendoscopy-
dc.subject.keywordAuthorclassification-
dc.subject.keywordPlusINFLAMMATORY-BOWEL-DISEASE-
dc.subject.keywordPlusRISK-FACTORS-
dc.subject.keywordPlusSURGERY-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryMedical Informatics-
dc.relation.journalResearchAreaMedical Informatics-
dc.identifier.articlenoe64987-
Appears in Collections:
7. Others (기타) > Others (기타) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.