Cited 0 times in 
Cited 0 times in 
Automatic Prediction of TMJ Disc Displacement in CBCT Images Using Machine Learning
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Choi, Hanseung | - |
| dc.contributor.author | Jeon, Kug Jin | - |
| dc.contributor.author | Lee, Chena | - |
| dc.contributor.author | Choi, Yoon Joo | - |
| dc.contributor.author | Jo, Gyu-Dong | - |
| dc.contributor.author | Han, Sang-Sun | - |
| dc.date.accessioned | 2025-10-02T05:46:23Z | - |
| dc.date.available | 2025-10-02T05:46:23Z | - |
| dc.date.created | 2025-09-22 | - |
| dc.date.issued | 2025-07 | - |
| dc.identifier.issn | 2948-2925 | - |
| dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/207384 | - |
| dc.description.abstract | Magnetic resonance imaging (MRI) is the gold standard for diagnosing disc displacement in temporomandibular joint (TMJ) disorders, but its high cost and practical challenges limit its accessibility. This study aimed to develop a machine learning (ML) model that can predict TMJ disc displacement using only cone-beam computed tomography (CBCT)-based radiomics features without MRI. CBCT images of 247 mandibular condyles from 134 patients who also underwent MRI scans were analyzed. To conduct three experiments based on the classification of various patient groups, we trained two ML models, random forest (RF) and extreme gradient boosting (XGBoost). Experiment 1 classified the data into three groups: Normal, disc displacement with reduction (DDWR), and disc displacement without reduction (DDWOR). Experiment 2 classified Normal versus disc displacement group (DDWR and DDWOR), and Experiment 3 classified Normal and DDWR versus DDWOR group. The RF model showed higher performance than XGBoost across all three experiments, and in particular, Experiment 3, which differentiated DDWOR from other conditions, achieved the highest accuracy with an area under the receiver operating characteristic curve (AUC) values of 0.86 (RF) and 0.85 (XGBoost). Experiment 2 followed with AUC values of 0.76 (RF) and 0.75 (XGBoost), while Experiment 1, which classified all three groups, had the lowest accuracy of 0.63 (RF) and 0.59 (XGBoost). The RF model, utilizing radiomics features from CBCT images, demonstrated potential as an assistant tool for predicting DDWOR, which requires the most careful management. | - |
| dc.language | English | - |
| dc.publisher | Springer Nature | - |
| dc.relation.isPartOf | JOURNAL OF IMAGING INFORMATICS IN MEDICINE | - |
| dc.relation.isPartOf | JOURNAL OF IMAGING INFORMATICS IN MEDICINE | - |
| dc.title | Automatic Prediction of TMJ Disc Displacement in CBCT Images Using Machine Learning | - |
| dc.type | Article | - |
| dc.contributor.googleauthor | Choi, Hanseung | - |
| dc.contributor.googleauthor | Jeon, Kug Jin | - |
| dc.contributor.googleauthor | Lee, Chena | - |
| dc.contributor.googleauthor | Choi, Yoon Joo | - |
| dc.contributor.googleauthor | Jo, Gyu-Dong | - |
| dc.contributor.googleauthor | Han, Sang-Sun | - |
| dc.identifier.doi | 10.1007/s10278-025-01609-0 | - |
| dc.relation.journalcode | J04610 | - |
| dc.identifier.eissn | 2948-2933 | - |
| dc.identifier.pmid | 40715860 | - |
| dc.subject.keyword | Artificial Intelligence | - |
| dc.subject.keyword | Machine Learning | - |
| dc.subject.keyword | Cone-Beam Computed Tomography | - |
| dc.subject.keyword | Temporomandibular Joint | - |
| dc.subject.keyword | Temporomandibular Joint Disc | - |
| dc.subject.keyword | Temporomandibular Joint Disorders | - |
| dc.contributor.affiliatedAuthor | Choi, Hanseung | - |
| dc.contributor.affiliatedAuthor | Jeon, Kug Jin | - |
| dc.contributor.affiliatedAuthor | Lee, Chena | - |
| dc.contributor.affiliatedAuthor | Choi, Yoon Joo | - |
| dc.contributor.affiliatedAuthor | Jo, Gyu-Dong | - |
| dc.contributor.affiliatedAuthor | Han, Sang-Sun | - |
| dc.identifier.scopusid | 2-s2.0-105011661727 | - |
| dc.identifier.wosid | 001536220900001 | - |
| dc.identifier.bibliographicCitation | JOURNAL OF IMAGING INFORMATICS IN MEDICINE, , 2025-07 | - |
| dc.identifier.rimsid | 89490 | - |
| dc.type.rims | ART | - |
| dc.description.journalClass | 1 | - |
| dc.description.journalClass | 1 | - |
| dc.subject.keywordAuthor | Artificial Intelligence | - |
| dc.subject.keywordAuthor | Machine Learning | - |
| dc.subject.keywordAuthor | Cone-Beam Computed Tomography | - |
| dc.subject.keywordAuthor | Temporomandibular Joint | - |
| dc.subject.keywordAuthor | Temporomandibular Joint Disc | - |
| dc.subject.keywordAuthor | Temporomandibular Joint Disorders | - |
| dc.subject.keywordPlus | TEMPOROMANDIBULAR-JOINT | - |
| dc.subject.keywordPlus | CLINICAL-DIAGNOSIS | - |
| dc.type.docType | Article; Early Access | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalWebOfScienceCategory | Radiology, Nuclear Medicine & Medical Imaging | - |
| dc.relation.journalResearchArea | Radiology, Nuclear Medicine & Medical Imaging | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.