0 110

Cited 0 times in

Cited 0 times in

Automatic Prediction of TMJ Disc Displacement in CBCT Images Using Machine Learning

DC Field Value Language
dc.contributor.authorChoi, Hanseung-
dc.contributor.authorJeon, Kug Jin-
dc.contributor.authorLee, Chena-
dc.contributor.authorChoi, Yoon Joo-
dc.contributor.authorJo, Gyu-Dong-
dc.contributor.authorHan, Sang-Sun-
dc.date.accessioned2025-10-02T05:46:23Z-
dc.date.available2025-10-02T05:46:23Z-
dc.date.created2025-09-22-
dc.date.issued2025-07-
dc.identifier.issn2948-2925-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/207384-
dc.description.abstractMagnetic resonance imaging (MRI) is the gold standard for diagnosing disc displacement in temporomandibular joint (TMJ) disorders, but its high cost and practical challenges limit its accessibility. This study aimed to develop a machine learning (ML) model that can predict TMJ disc displacement using only cone-beam computed tomography (CBCT)-based radiomics features without MRI. CBCT images of 247 mandibular condyles from 134 patients who also underwent MRI scans were analyzed. To conduct three experiments based on the classification of various patient groups, we trained two ML models, random forest (RF) and extreme gradient boosting (XGBoost). Experiment 1 classified the data into three groups: Normal, disc displacement with reduction (DDWR), and disc displacement without reduction (DDWOR). Experiment 2 classified Normal versus disc displacement group (DDWR and DDWOR), and Experiment 3 classified Normal and DDWR versus DDWOR group. The RF model showed higher performance than XGBoost across all three experiments, and in particular, Experiment 3, which differentiated DDWOR from other conditions, achieved the highest accuracy with an area under the receiver operating characteristic curve (AUC) values of 0.86 (RF) and 0.85 (XGBoost). Experiment 2 followed with AUC values of 0.76 (RF) and 0.75 (XGBoost), while Experiment 1, which classified all three groups, had the lowest accuracy of 0.63 (RF) and 0.59 (XGBoost). The RF model, utilizing radiomics features from CBCT images, demonstrated potential as an assistant tool for predicting DDWOR, which requires the most careful management.-
dc.languageEnglish-
dc.publisherSpringer Nature-
dc.relation.isPartOfJOURNAL OF IMAGING INFORMATICS IN MEDICINE-
dc.relation.isPartOfJOURNAL OF IMAGING INFORMATICS IN MEDICINE-
dc.titleAutomatic Prediction of TMJ Disc Displacement in CBCT Images Using Machine Learning-
dc.typeArticle-
dc.contributor.googleauthorChoi, Hanseung-
dc.contributor.googleauthorJeon, Kug Jin-
dc.contributor.googleauthorLee, Chena-
dc.contributor.googleauthorChoi, Yoon Joo-
dc.contributor.googleauthorJo, Gyu-Dong-
dc.contributor.googleauthorHan, Sang-Sun-
dc.identifier.doi10.1007/s10278-025-01609-0-
dc.relation.journalcodeJ04610-
dc.identifier.eissn2948-2933-
dc.identifier.pmid40715860-
dc.subject.keywordArtificial Intelligence-
dc.subject.keywordMachine Learning-
dc.subject.keywordCone-Beam Computed Tomography-
dc.subject.keywordTemporomandibular Joint-
dc.subject.keywordTemporomandibular Joint Disc-
dc.subject.keywordTemporomandibular Joint Disorders-
dc.contributor.affiliatedAuthorChoi, Hanseung-
dc.contributor.affiliatedAuthorJeon, Kug Jin-
dc.contributor.affiliatedAuthorLee, Chena-
dc.contributor.affiliatedAuthorChoi, Yoon Joo-
dc.contributor.affiliatedAuthorJo, Gyu-Dong-
dc.contributor.affiliatedAuthorHan, Sang-Sun-
dc.identifier.scopusid2-s2.0-105011661727-
dc.identifier.wosid001536220900001-
dc.identifier.bibliographicCitationJOURNAL OF IMAGING INFORMATICS IN MEDICINE, , 2025-07-
dc.identifier.rimsid89490-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorArtificial Intelligence-
dc.subject.keywordAuthorMachine Learning-
dc.subject.keywordAuthorCone-Beam Computed Tomography-
dc.subject.keywordAuthorTemporomandibular Joint-
dc.subject.keywordAuthorTemporomandibular Joint Disc-
dc.subject.keywordAuthorTemporomandibular Joint Disorders-
dc.subject.keywordPlusTEMPOROMANDIBULAR-JOINT-
dc.subject.keywordPlusCLINICAL-DIAGNOSIS-
dc.type.docTypeArticle; Early Access-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
Appears in Collections:
2. College of Dentistry (치과대학) > Dept. of Oral and Maxillofacial Radiology (영상치의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.