9 93

Cited 0 times in

Desarrollo de una escala predictiva en pacientes con shock séptico refractario mediante un modelo híbrido de aprendizaje automático y regresión

Other Titles
 Scale to predict risk for refractory septic shock based on a hybrid approach using machine learning and regression modeling 
Authors
 Sejin Heo  ;  Daun Jeong  ;  Minyoung Choi  ;  Inkyu Kim  ;  Minha Kim  ;  Ye Rim Lee  ;  Byuk Sung Ko  ;  Seung Mok Ryoo  ;  Eunah Han  ;  Hyunglan Chang  ;  Chang June Yune  ;  Hui Jai Lee  ;  Gil Joon Suh  ;  Sung-Hyuk Choi  ;  Sung Phil Chung  ;  Tae Ho Lim  ;  Won Young Kim  ;  Kyuseok Kim  ;  Sung Yeon Hwang  ;  Jong Eun Park  ;  Gun Tak Lee  ;  Tae Gun Shin  ;  Korean Shock Society 
Citation
 Emergencias : revista de la Sociedad Espanola de Medicina de Emergencias, Vol.37(1) : 15-22, 2025-02 
Journal Title
 Emergencias : revista de la Sociedad Espanola de Medicina de Emergencias 
Issue Date
2025-02
MeSH
Aged ; Emergency Service, Hospital ; Female ; Humans ; Intensive Care Units ; Machine Learning* ; Male ; Middle Aged ; Norepinephrine / administration & dosage ; Norepinephrine / therapeutic use ; ROC Curve ; Registries ; Regression Analysis ; Retrospective Studies ; Risk Assessment / methods ; Shock, Septic* / diagnosis
Keywords
Aprendizaje automático ; Machine learning ; Predictivo ; Risk ; Septic shock ; Shock séptico ; Vasopresores ; Vasopressors
Abstract
Objective: To develop a scale to predict refractory septic shock (SS) based on clinical variables recorded during initial evaluations of patients.

Methods: Multicenter retrospective study of data for patients with suspected infection registered in the Marketplace for Medical Information in Intensive Care (MIMIC-IV). These data were used for the development and internal validation of the refractory SS scale (RSSS). For external validation, we used retrospective data for 2 cohorts: 1) patients diagnosed with SS in an emergency department (ED cohort) whose data were registered in a Korean SS registry, and 2) patients diagnosed with SS in 6 hospital intensive care units (ICU cohort). A machine-learning automatic clinical scoring system (AutoScore) was used in the development phase. The performance of the RSSS in the validation cohorts was assessed with the area under the receiver operating characteristic curve (AUROC) for each. The primary outcome was the development of refractory SS within 24 hours of ICU admission. Refractory SS was defined by the need for a norepinephrine-equivalent dose greater than 0.5 µg/kg/min.

Results: We collected data for 29 618 patients from the MIMIC-IV registry, 3113 patients for the ED cohort, and 1015 for the ICU cohort. The RSSS had 6 predictors: serum lactate level, systolic blood pressure, heart rate, temperature, arterial pH, and leukocyte count. The scale's AUROCs were as follows: 0.873 (95% CI, 0.846-0.900) in the internal validation, 0.705 (95% CI, 0.678-0.733) in the ED cohort on arrival, 0.781 (95% CI, 0.757-0.805) in the ED cohort at the moment of diagnosing hypoperfusion or hypotension, and 0.822 (95% CI, 0.787-0.857) in the ICU cohort. Calibration was acceptable in all the cohorts.

Conclusions: The RSSS had adequate diagnostic accuracy in multiple cohorts of patients diagnosed in the ED and ICU.
Files in This Item:
T202504843.pdf Download
DOI
10.55633/s3me/108.2024
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Emergency Medicine (응급의학교실) > 1. Journal Papers
Yonsei Authors
Chung, Sung Phil(정성필) ORCID logo https://orcid.org/0000-0002-3074-011X
Han, Eunah(한은아) ORCID logo https://orcid.org/0000-0001-7928-3901
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/206709
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links