Cited 0 times in

Retinal fundus imaging as biomarker for ADHD using machine learning for screening and visual attention stratification

DC Field Value Language
dc.contributor.author박유랑-
dc.contributor.author윤상철-
dc.contributor.author이정한-
dc.contributor.author천근아-
dc.contributor.author최항녕-
dc.date.accessioned2025-03-27T06:33:49Z-
dc.date.available2025-03-27T06:33:49Z-
dc.date.issued2025-03-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/204474-
dc.description.abstractAttention-deficit/hyperactivity disorder (ADHD), characterized by diagnostic complexity and symptom heterogeneity, is a prevalent neurodevelopmental disorder. Here, we explored the machine learning (ML) analysis of retinal fundus photographs as a noninvasive biomarker for ADHD screening and stratification of executive function (EF) deficits. From April to October 2022, 323 children and adolescents with ADHD were recruited from two tertiary South Korean hospitals, and the age- and sex-matched individuals with typical development were retrospectively collected. We used the AutoMorph pipeline to extract retinal features and used four types of ML models for ADHD screening and EF subdomain prediction, and we adopted the Shapely additive explanation method. ADHD screening models achieved 95.5%-96.9% AUROC. For EF function stratification, the visual and auditory subdomains showed strong (AUROC > 85%) and poor performances, respectively. Our analysis of retinal fundus photographs demonstrated potential as a noninvasive biomarker for ADHD screening and EF deficit stratification in the visual attention domain.-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.relation.isPartOfNPJ DIGITAL MEDICINE(Nature partner journals digital medicine Digital medicine)-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleRetinal fundus imaging as biomarker for ADHD using machine learning for screening and visual attention stratification-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Biomedical Systems Informatics (의생명시스템정보학교실)-
dc.contributor.googleauthorHangnyoung Choi-
dc.contributor.googleauthorJaeSeong Hong-
dc.contributor.googleauthorHyun Goo Kang-
dc.contributor.googleauthorMin-Hyeon Park-
dc.contributor.googleauthorSungji Ha-
dc.contributor.googleauthorJunghan Lee-
dc.contributor.googleauthorSangchul Yoon-
dc.contributor.googleauthorDaeseong Kim-
dc.contributor.googleauthorYu Rang Park-
dc.contributor.googleauthorKeun-Ah Cheon-
dc.identifier.doi10.1038/s41746-025-01547-9-
dc.contributor.localIdA05624-
dc.contributor.localIdA02560-
dc.contributor.localIdA05799-
dc.contributor.localIdA04027-
dc.contributor.localIdA06480-
dc.relation.journalcodeJ03796-
dc.identifier.eissn2398-6352-
dc.identifier.pmid40097590-
dc.contributor.alternativeNamePark, Yu Rang-
dc.contributor.affiliatedAuthor박유랑-
dc.contributor.affiliatedAuthor윤상철-
dc.contributor.affiliatedAuthor이정한-
dc.contributor.affiliatedAuthor천근아-
dc.contributor.affiliatedAuthor최항녕-
dc.citation.volume8-
dc.citation.number1-
dc.citation.startPage164-
dc.identifier.bibliographicCitationNPJ DIGITAL MEDICINE, Vol.8(1) : 164, 2025-03-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Biomedical Systems Informatics (의생명시스템정보학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Emergency Medicine (응급의학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Psychiatry (정신과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.