Cited 0 times in

Predicting the wicking rate of nitrocellulose membranes from recipe data: a case study using ANN at a membrane manufacturing in South Korea

Authors
 Janith Dissanayake  ;  Sung Bong Kang  ;  Jihoon Park  ;  Fang Yinbao  ;  Sungryul Park  ;  Min-Ho Lee 
Citation
 ANALYTICAL SCIENCES, Vol.40(5) : 907-915, 2024-05 
Journal Title
 ANALYTICAL SCIENCES 
Issue Date
2024-05
Keywords
Artificial neural networks ; Deep Learning ; Lateral flow assays ; Nitrocellulose membranes ; Wicking rate
Abstract
Lateral flow assays have been widely used for detecting coronavirus disease 2019 (COVID-19). A lateral flow assay consists of a Nitrocellulose (NC) membrane, which must have a specific lateral flow rate for the proteins to react. The wicking rate is conventionally used as a method to assess the lateral flow in membranes. We used multiple regression and artificial neural networks (ANN) to predict the wicking rate of NC membranes based on membrane recipe data. The developed ANN predicted the wicking rate with a mean square error of 0.059, whereas the multiple regression had a square error of 0.503. This research also highlighted the significant impact of the water content on the wicking rate through images obtained from scanning electron microscopy. The findings of this research can cut down the research and development costs of novel NC membranes with a specific wicking rate significantly, as the algorithm can predict the wicking rate based on the membrane recipe.
Files in This Item:
T992025155.pdf Download
DOI
10.1007/s44211-024-00540-8
Appears in Collections:
1. College of Medicine (의과대학) > Others (기타) > 1. Journal Papers
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/204246
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links