Cited 0 times in

Impact of linkage level on inferences from big data analyses in health and medical research: an empirical study

Authors
 Bora Lee  ;  Young-Kyun Lee  ;  Sung Han Kim  ;  HyunJin Oh  ;  Sungho Won  ;  Suk-Yong Jang  ;  Ye Jin Jeon  ;  Bit-Na Yoo  ;  Jean-Kyung Bak 
Citation
 BMC MEDICAL INFORMATICS AND DECISION MAKING, Vol.24(1) : 193, 2024-07 
Journal Title
BMC MEDICAL INFORMATICS AND DECISION MAKING
Issue Date
2024-07
MeSH
Big Data* ; Biomedical Research ; Empirical Research ; Female ; Humans ; Male ; Medical Record Linkage*
Keywords
Accuracy ; Directly identifiable information ; Indirectly identifiable information ; Linkage levels
Abstract
Background: Linkage errors that occur according to linkage levels can adversely affect the accuracy and reliability of analysis results. This study aimed to identify the differences in results according to personally identifiable information linkage level, sample size, and analysis methods through empirical analysis.

Methods: The difference between the results of linkage in directly identifiable information (DII) and indirectly identifiable information (III) linkage levels was set as III linkage based on name, date of birth, and sex and DII linkage based on resident registration number. The datasets linked at each level were named as databaseIII (DBIII) and databaseDII (DBDII), respectively. Considering the analysis results of the DII-linked dataset as the gold standard, descriptive statistics, group comparison, incidence estimation, treatment effect, and moderation effect analysis results were assessed.

Results: The linkage rates for DBDII and DBIII were 71.1% and 99.7%, respectively. Regarding descriptive statistics and group comparison analysis, the difference in effect in most cases was "none" to "very little." With respect to cervical cancer that had a relatively small sample size, analysis of DBIII resulted in an underestimation of the incidence in the control group and an overestimation of the incidence in the treatment group (hazard ratio [HR] = 2.62 [95% confidence interval (CI): 1.63-4.23] in DBIII vs. 1.80 [95% CI: 1.18-2.73] in DBDII). Regarding prostate cancer, there was a conflicting tendency with the treatment effect being over or underestimated according to the surveillance, epidemiology, and end results summary staging (HR = 2.27 [95% CI: 1.91-2.70] in DBIII vs. 1.92 [95% CI: 1.70-2.17] in DBDII for the localized stage; HR = 1.80 [95% CI: 1.37-2.36] in DBIII vs. 2.05 [95% CI: 1.67-2.52] in DBDII for the regional stage).

Conclusions: To prevent distortion of the analyses results in health and medical research, it is important to check that the patient population and sample size by each factor of interest (FOI) are sufficient when different data are linked using DBDII. In cases involving a rare disease or with a small sample size for FOI, there is a high likelihood that a DII linkage is unavoidable.
Files in This Item:
T992024468.pdf Download
DOI
10.1186/s12911-024-02586-0
Appears in Collections:
5. Graduate School of Transdisciplinary Health Sciences (융합보건의료대학원) > Graduate School of Transdisciplinary Health Sciences (융합보건의료대학원) > 1. Journal Papers
Yonsei Authors
Jang, Suk-Yong(장석용)
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/202140
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links