Cited 1 times in

Artificial intelligence-enhanced automation for M-mode echocardiographic analysis: ensuring fully automated, reliable, and reproducible measurements

DC Field Value Language
dc.contributor.author장혁재-
dc.contributor.author정다운-
dc.contributor.author홍영택-
dc.contributor.author정성희-
dc.date.accessioned2025-02-03T08:09:00Z-
dc.date.available2025-02-03T08:09:00Z-
dc.date.issued2024-06-
dc.identifier.issn1569-5794-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/201570-
dc.description.abstractTo enhance M-mode echocardiography's utility for measuring cardiac structures, we developed and evaluated an artificial intelligence (AI)-based automated analysis system for M-mode images through the aorta and left atrium [M-mode (Ao-LA)], and through the left ventricle [M-mode (LV)]. Our system, integrating two deep neural networks (DNN) for view classification and image segmentation, alongside an auto-measurement algorithm, was developed using 5,958 M-mode images [3,258 M-mode (LA-Ao), and 2,700 M-mode (LV)] drawn from a nationwide echocardiographic dataset collated from five tertiary hospitals. The performance of view classification and segmentation DNNs were evaluated on 594 M-mode images, while automatic measurement accuracy was tested on separate internal test set with 100 M-mode images as well as external test set with 280 images (140 sinus rhythm and 140 atrial fibrillation). Performance evaluation showed the view classification DNN's overall accuracy of 99.8% and segmentation DNN's Dice similarity coefficient of 94.3%. Within the internal test set, all automated measurements, including LA, Ao, and LV wall and cavity, resonated strongly with expert evaluations, exhibiting Pearson's correlation coefficients (PCCs) of 0.81-0.99. This performance persisted in the external test set for both sinus rhythm (PCC, 0.84-0.98) and atrial fibrillation (PCC, 0.70-0.97). Notably, automatic measurements, consistently offering multi-cardiac cycle readings, showcased a stronger correlation with the averaged multi-cycle manual measurements than with those of a single representative cycle. Our AI-based system for automatic M-mode echocardiographic analysis demonstrated excellent accuracy, reproducibility, and speed. This automated approach has the potential to improve efficiency and reduce variability in clinical practice.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherKluwer Academic Publishers-
dc.relation.isPartOfINTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHAged-
dc.subject.MESHAorta / diagnostic imaging-
dc.subject.MESHArtificial Intelligence-
dc.subject.MESHAtrial Fibrillation / diagnostic imaging-
dc.subject.MESHAtrial Fibrillation / physiopathology-
dc.subject.MESHAutomation*-
dc.subject.MESHDatabases, Factual-
dc.subject.MESHDatasets as Topic-
dc.subject.MESHDeep Learning-
dc.subject.MESHEchocardiography*-
dc.subject.MESHFemale-
dc.subject.MESHHeart Atria / diagnostic imaging-
dc.subject.MESHHeart Atria / physiopathology-
dc.subject.MESHHeart Ventricles / diagnostic imaging-
dc.subject.MESHHeart Ventricles / physiopathology-
dc.subject.MESHHumans-
dc.subject.MESHImage Interpretation, Computer-Assisted*-
dc.subject.MESHMale-
dc.subject.MESHMiddle Aged-
dc.subject.MESHObserver Variation-
dc.subject.MESHPredictive Value of Tests*-
dc.subject.MESHReproducibility of Results-
dc.titleArtificial intelligence-enhanced automation for M-mode echocardiographic analysis: ensuring fully automated, reliable, and reproducible measurements-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Internal Medicine (내과학교실)-
dc.contributor.googleauthorDawun Jeong-
dc.contributor.googleauthorSunghee Jung-
dc.contributor.googleauthorYeonyee E Yoon-
dc.contributor.googleauthorJaeik Jeon-
dc.contributor.googleauthorYeonggul Jang-
dc.contributor.googleauthorSeongmin Ha-
dc.contributor.googleauthorYoungtaek Hong-
dc.contributor.googleauthorJunHeum Cho-
dc.contributor.googleauthorSeung-Ah Lee-
dc.contributor.googleauthorHong-Mi Choi-
dc.contributor.googleauthorHyuk-Jae Chang-
dc.identifier.doi10.1007/s10554-024-03095-x-
dc.contributor.localIdA03490-
dc.contributor.localIdA03587-
dc.relation.journalcodeJ01094-
dc.identifier.eissn1875-8312-
dc.identifier.pmid38652399-
dc.identifier.urlhttps://link.springer.com/article/10.1007/s10554-024-03095-x-
dc.subject.keywordArtificial Intelligence-
dc.subject.keywordAutomatic quantification-
dc.subject.keywordDeep learning-
dc.subject.keywordEchocardiography-
dc.subject.keywordM-mode-
dc.contributor.alternativeNameChang, Hyuck Jae-
dc.contributor.affiliatedAuthor장혁재-
dc.contributor.affiliatedAuthor정다운-
dc.citation.volume40-
dc.citation.number6-
dc.citation.startPage1245-
dc.citation.endPage1256-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, Vol.40(6) : 1245-1256, 2024-06-
Appears in Collections:
1. College of Medicine (의과대학) > Research Institute (부설연구소) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.