83 193

Cited 5 times in

Comparative Analysis of Bone Regeneration According to Particle Type and Barrier Membrane for Octacalcium Phosphate Grafted into Rabbit Calvarial Defects

DC Field Value Language
dc.contributor.author김선재-
dc.contributor.author박진영-
dc.contributor.author백정원-
dc.contributor.author최성호-
dc.contributor.author표세욱-
dc.date.accessioned2024-08-19T00:12:37Z-
dc.date.available2024-08-19T00:12:37Z-
dc.date.issued2024-02-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/200254-
dc.description.abstractThis animal study was aimed to evaluate the efficacy of new bone formation and volume maintenance according to the particle type and the collagen membrane function for grafted octacalcium phosphate (OCP) in rabbit calvarial defects. The synthetic bone substitutes were prepared in powder form with 90% OCP and granular form with 76% OCP, respectively. The calvarial defects were divided into four groups according to the particle type and the membrane application. All specimens were acquired 2 weeks (n = 5) and 8 weeks (n = 5) after surgery. According to the micro-CT results, the new bone volume increased at 2 weeks in the 76% OCP groups compared to the 90% OCP groups, and the bone volume ratio was significantly lower in the 90% OCP group after 2 weeks. The histomorphometric analysis results indicated that the new bone area and its ratio in all experimental groups were increased at 8 weeks except for the group with 90% OCP without a membrane. Furthermore, the residual bone graft area and its ratio in the 90% OCP groups were decreased at 8 weeks. In conclusion, all types of OCP could be applied as biocompatible bone graft materials regardless of its density and membrane application. Neither the OCP concentration nor the membrane application had a significant effect on new bone formation in the defect area, but the higher the OCP concentration, the less graft volume maintenance was needed.-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish-
dc.publisherMDPI AG-
dc.relation.isPartOfBioengineering-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleComparative Analysis of Bone Regeneration According to Particle Type and Barrier Membrane for Octacalcium Phosphate Grafted into Rabbit Calvarial Defects-
dc.typeArticle-
dc.contributor.collegeCollege of Dentistry (치과대학)-
dc.contributor.departmentDept. of Prosthodontics (보철과학교실)-
dc.contributor.googleauthorSe-Wook Pyo-
dc.contributor.googleauthorJeong-Won Paik-
dc.contributor.googleauthorDa-Na Lee-
dc.contributor.googleauthorYoung-Wook Seo-
dc.contributor.googleauthorJin-Young Park-
dc.contributor.googleauthorSunjai Kim-
dc.contributor.googleauthorSeong-Ho Choi-
dc.identifier.doi10.3390/bioengineering11030215-
dc.contributor.localIdA00558-
dc.contributor.localIdA04749-
dc.contributor.localIdA01836-
dc.contributor.localIdA04081-
dc.contributor.localIdA06270-
dc.relation.journalcodeJ04528-
dc.identifier.eissn2306-5354-
dc.identifier.pmid38534489-
dc.subject.keywordbone regeneration-
dc.subject.keywordcollagen membrane-
dc.subject.keywordconcentration-
dc.subject.keywordoctacalcium phosphate-
dc.contributor.alternativeNameKim, Sun Jai-
dc.contributor.affiliatedAuthor김선재-
dc.contributor.affiliatedAuthor박진영-
dc.contributor.affiliatedAuthor백정원-
dc.contributor.affiliatedAuthor최성호-
dc.contributor.affiliatedAuthor표세욱-
dc.citation.volume11-
dc.citation.number3-
dc.citation.startPage215-
dc.identifier.bibliographicCitationBioengineering, Vol.11(3) : 215, 2024-02-
Appears in Collections:
2. College of Dentistry (치과대학) > Dept. of Prosthodontics (보철과학교실) > 1. Journal Papers
2. College of Dentistry (치과대학) > Dept. of Periodontics (치주과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.