Cited 1 times in

Machine Learning-Based Pain Severity Classification of Lumbosacral Radiculopathy Using Infrared Thermal Imaging

Authors
 Jinu Rim  ;  Seungjun Ryu  ;  Hyunjun Jang  ;  Hoyeol Zhang  ;  Yongeun Cho 
Citation
 APPLIED SCIENCES-BASEL, Vol.13(6) : 3541, 2023-03 
Journal Title
APPLIED SCIENCES-BASEL
Issue Date
2023-03
Keywords
infrared thermography ; lumbosacral radiculopathy ; machine learning ; multiclass classification
Abstract
Pain is subjective and varies among individuals. Doctors determine pain severity based on a patient's self-reported symptoms. In such situations, a language barrier may prevent patients from expressing their pain accurately, which may cause doctors to underestimate their pain degree. Moreover, patients' subjective descriptions of pain can determine their eligibility for secondary benefits, as in the case of compensation for traffic or industrial accidents. Therefore, to perform a multiclass prediction of the severity of lumbar radiculopathy, the authors applied digital infrared thermographic imaging (DITI) to a machine-learning (ML) algorithm. The DITI dataset included data from a healthy population and patients with radiculopathy with herniated lumbar discs at the L3/4, L4/5, and L5/S1 levels. The dataset of 1000 patients was split into training and test datasets in a 7:3 ratio to evaluate the model's performance. For the training dataset, the average accuracy, precision, recall, and F1 score were 0.82, 0.76, 0.72, and 0.74, respectively. For the test dataset, these values were 0.77, 0.71, 0.75, and 0.73, respectively. Applying the ML algorithm to a pain-severity classification using thermographic images will aid in the treatment of lumbosacral radiculopathy and allow providers to monitor the therapeutic effect of interventions through an assessment of physiological evidence.
Files in This Item:
T999202570.pdf Download
DOI
10.3390/app13063541
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Neurosurgery (신경외과학교실) > 1. Journal Papers
Yonsei Authors
Rim, Jinu(임진우)
Jang, Hyun Jun(장현준)
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/198370
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links