155 207

Cited 4 times in

Design, fabrication, and structural safety validation of 3D-printable biporous bone augments

DC Field Value Language
dc.contributor.author박종철-
dc.date.accessioned2023-07-12T03:06:09Z-
dc.date.available2023-07-12T03:06:09Z-
dc.date.issued2023-01-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/195498-
dc.description.abstractThe use of commercial products such as a cup and liner for total hip arthroplasty for patients with severe bone defects has a high probability of failure. In these patients the cup alone cannot cover the bone defect, and thus, an additional augment or cage is required. In this study, we designed three-dimensional (3D) printable bone augments as an alternative to surgeries using reinforcement cages. Thirty-five sharp-edged bone augments of various sizes were 3D printed. A biporous structure was designed to reduce the weight of the augment and to facilitate bone ingrowth. Two types of frames were used to prevent damage to the augment’s porous structure and maintain its stability during printing. Furthermore, two types of holes were provided for easy augment fixation at various angles. Fatigue tests were performed on a combination of worst-case sizes derived using finite element analysis. The test results confirmed the structural stability of the specimens at a load of 5340 N. Although the porosity of the specimens was measured to be 63.70%, it cannot be said that the porous nature was uniformly distributed because porosity tests were performed locally and randomly. In summary, 3D-printable biporous bone augments capable of bonding from various angles and bidirectionally through angulation and bottom-plane screw holes are proposed. The mechanical results with bone augments indicate good structural safety in patients. However, further research is necessary to study the clinical applications of the proposed bone augment.-
dc.description.statementOfResponsibilityopen-
dc.relation.isPartOfBio-design and Manufacturing-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleDesign, fabrication, and structural safety validation of 3D-printable biporous bone augments-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Medical Engineering (의학공학교실)-
dc.contributor.googleauthorYeokyung Kang-
dc.contributor.googleauthorDasol Lim-
dc.contributor.googleauthorDoo-Hoon Sun-
dc.contributor.googleauthorJong-Chul Park-
dc.contributor.googleauthorJungsung Kim-
dc.identifier.doi10.1007/s42242-022-00214-2-
dc.contributor.localIdA01662-
dc.subject.keywordBone augment-
dc.subject.keyword3D printing-
dc.subject.keywordBiporous structure-
dc.subject.keywordTotal hip arthroplasty-
dc.subject.keywordMetal implant-
dc.contributor.alternativeNamePark, Jong Chul-
dc.contributor.affiliatedAuthor박종철-
dc.citation.volume6-
dc.citation.number1-
dc.citation.startPage26-
dc.citation.endPage37-
dc.identifier.bibliographicCitationBio-design and Manufacturing, Vol.6(1) : 26-37, 2023-01-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Medical Engineering (의학공학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.