130 201

Cited 0 times in

O2 variant chip to simulate site-specific skeletogenesis from hypoxic bone marrow

DC Field Value Language
dc.contributor.author성학준-
dc.contributor.author신영민-
dc.contributor.author하현수-
dc.contributor.author유승은-
dc.date.accessioned2023-07-12T02:28:04Z-
dc.date.available2023-07-12T02:28:04Z-
dc.date.issued2023-03-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/195318-
dc.description.abstractThe stemness of bone marrow mesenchymal stem cells (BMSCs) is maintained by hypoxia. The oxygen level increases from vessel-free cartilage to hypoxic bone marrow and, furthermore, to vascularized bone, which might direct the chondrogenesis to osteogenesis and regenerate the skeletal system. Hence, oxygen was diffused from relatively low to high levels throughout a three-dimensional chip. When we cultured BMSCs in the chip and implanted them into the rabbit defect models of low-oxygen cartilage and high-oxygen calvaria bone, (i) the low oxygen level (base) promoted stemness and chondrogenesis of BMSCs with robust antioxidative potential; (ii) the middle level (two times ≥ low) pushed BMSCs to quiescence; and (iii) the high level (four times ≥ low) promoted osteogenesis by disturbing the redox balance and stemness. Last, endochondral or intramembranous osteogenesis upon transition from low to high oxygen in vivo suggests a developmental mechanism-driven solution to promote chondrogenesis to osteogenesis in the skeletal system by regulating the oxygen environment.-
dc.description.statementOfResponsibilityopen-
dc.formatapplication/pdf-
dc.languageEnglish-
dc.publisherAmerican Association for the Advancement of Science-
dc.relation.isPartOfSCIENCE ADVANCES-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHAnimals-
dc.subject.MESHBone Marrow Cells-
dc.subject.MESHBone Marrow*-
dc.subject.MESHCartilage*-
dc.subject.MESHCell Differentiation-
dc.subject.MESHCells, Cultured-
dc.subject.MESHHypoxia-
dc.subject.MESHOsteogenesis-
dc.subject.MESHOxygen-
dc.subject.MESHRabbits-
dc.titleO2 variant chip to simulate site-specific skeletogenesis from hypoxic bone marrow-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Medical Engineering (의학공학교실)-
dc.contributor.googleauthorHye-Seon Kim-
dc.contributor.googleauthorHyun-Su Ha-
dc.contributor.googleauthorDae-Hyun Kim-
dc.contributor.googleauthorDeok Hyeon Son-
dc.contributor.googleauthorSewoom Baek-
dc.contributor.googleauthorJeongeun Park-
dc.contributor.googleauthorChan Hee Lee-
dc.contributor.googleauthorSuji Park-
dc.contributor.googleauthorHyo-Jin Yoon-
dc.contributor.googleauthorSeung Eun Yu-
dc.contributor.googleauthorJeon Il Kang-
dc.contributor.googleauthorKyung Min Park-
dc.contributor.googleauthorYoung Min Shin-
dc.contributor.googleauthorJung Bok Lee-
dc.contributor.googleauthorHak-Joon Sung-
dc.identifier.doi10.1126/sciadv.add4210-
dc.contributor.localIdA01958-
dc.contributor.localIdA05925-
dc.relation.journalcodeJ03735-
dc.identifier.eissn2375-2548-
dc.identifier.pmid36947623-
dc.contributor.alternativeNameSung, Hak-Joon-
dc.contributor.affiliatedAuthor성학준-
dc.contributor.affiliatedAuthor신영민-
dc.citation.volume9-
dc.citation.number12-
dc.citation.startPageeadd4210-
dc.identifier.bibliographicCitationSCIENCE ADVANCES, Vol.9(12) : eadd4210, 2023-03-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Medical Engineering (의학공학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.