Cited 7 times in
Combining structure-based pharmacophore modeling and machine learning for the identification of novel BTK inhibitors
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 이덕철 | - |
dc.contributor.author | 동재준 | - |
dc.date.accessioned | 2022-12-22T05:18:46Z | - |
dc.date.available | 2022-12-22T05:18:46Z | - |
dc.date.issued | 2022-12 | - |
dc.identifier.issn | 0141-8130 | - |
dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/192360 | - |
dc.description.abstract | Bruton's tyrosine kinase (BTK) is a critical enzyme which is involved in multiple signaling pathways that regulate cellular survival, activation, and proliferation, making it a major cancer therapeutic target. We applied the novel integrated structure-based pharmacophore modeling, machine learning, and other in silico studies to screen the Korean chemical database (KCB) to identify the potential BTK inhibitors (BTKi). Further evaluation of these inhibitors on three different human cancer cell lines showed significant cell growth inhibitory activity. Among the 13 compounds shortlisted, four demonstrated consistent cell inhibition activity among breast, gastric, and lung cancer cells (IC50 below 3 μM). The selected compounds also showed significant kinase inhibition activity (IC50 below 5 μM). The current study suggests the potential of these inhibitors for targeting BTK malignant tumors. | - |
dc.description.statementOfResponsibility | restriction | - |
dc.language | English | - |
dc.publisher | Elsevier | - |
dc.relation.isPartOf | INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES | - |
dc.rights | CC BY-NC-ND 2.0 KR | - |
dc.subject.MESH | Agammaglobulinaemia Tyrosine Kinase | - |
dc.subject.MESH | Humans | - |
dc.subject.MESH | Machine Learning | - |
dc.subject.MESH | Phosphorylation | - |
dc.subject.MESH | Protein Kinase Inhibitors* / chemistry | - |
dc.subject.MESH | Protein Kinase Inhibitors* / pharmacology | - |
dc.subject.MESH | Protein-Tyrosine Kinases* / metabolism | - |
dc.title | Combining structure-based pharmacophore modeling and machine learning for the identification of novel BTK inhibitors | - |
dc.type | Article | - |
dc.contributor.college | College of Medicine (의과대학) | - |
dc.contributor.department | Dept. of Family Medicine (가정의학교실) | - |
dc.contributor.googleauthor | Tanuj Sharma | - |
dc.contributor.googleauthor | Venu Venkatarame Gowda Saralamma | - |
dc.contributor.googleauthor | Duk Chul Lee | - |
dc.contributor.googleauthor | Mohammad Azhar Imran | - |
dc.contributor.googleauthor | Jaehyuk Choi | - |
dc.contributor.googleauthor | Mohammad Hassan Baig | - |
dc.contributor.googleauthor | Jae-June Dong | - |
dc.identifier.doi | 10.1016/j.ijbiomac.2022.09.151 | - |
dc.contributor.localId | A02716 | - |
dc.contributor.localId | A04927 | - |
dc.relation.journalcode | J03456 | - |
dc.identifier.eissn | 1879-0003 | - |
dc.identifier.pmid | 36130643 | - |
dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S0141813022020827?via%3Dihub | - |
dc.subject.keyword | Bruton's tyrosine kinase | - |
dc.subject.keyword | Machine learning | - |
dc.subject.keyword | Pharmacophore | - |
dc.subject.keyword | Virtual screening | - |
dc.contributor.alternativeName | Lee, Duk Chul | - |
dc.contributor.affiliatedAuthor | 이덕철 | - |
dc.contributor.affiliatedAuthor | 동재준 | - |
dc.citation.volume | 222 | - |
dc.citation.number | Part A | - |
dc.citation.startPage | 239 | - |
dc.citation.endPage | 250 | - |
dc.identifier.bibliographicCitation | INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, Vol.222(Part A) : 239-250, 2022-12 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.