0 256

Cited 35 times in

Enhanced osteogenic differentiation of human mesenchymal stem cells on Ti surfaces with electrochemical nanopattern formation

DC Field Value Language
dc.contributor.author신용철-
dc.date.accessioned2022-08-19T06:27:32Z-
dc.date.available2022-08-19T06:27:32Z-
dc.date.issued2019-06-
dc.identifier.issn0928-4931-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/189194-
dc.description.abstractTitanium (Ti) and its alloys are mainly used for dental and orthopedic applications due to their excellent biocompatibility and mechanical properties. However, their intrinsic bioinertness often quotes as a common complaint for biomedical applications. Herein, we produced nanopattern Ti surfaces with 10 nm nanopores in 120 nm dimples by electrochemical nanopattern formation (ENF), and evaluated the osteogenic differentiation of human mesenchymal stem cells (hMSCs) on the nanopattern Ti surfaces. The ENF surfaces were obtained by removing the TiO2 nanotube (NT) layers prepared by an anodization process. To determine the in vitro effects of the ENF surface, cell proliferation assay, alkaline phosphatase activity assay, alizarin red staining, western blotting, and immunocytothemistry were performed. Atomic force microscopy and scanning electron microscopy analysis show that the ENF surface has an ultrafine surface roughness with highly aligned nanoporous morphology. hMSCs on ENF surfaces exhibit increased proliferation and enhanced osteogenic differentiation as compared to the ordered TiO2 nanotubular and compact TiO2 surfaces. Surface modification with the ENF process is a promising technique for fabricating osteointegrative implant materials with a highly bioactive, rigid and purified nano surfaces.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherElsevier-
dc.relation.isPartOfMATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHAlkaline Phosphatase / metabolism-
dc.subject.MESHCell Differentiation* / drug effects-
dc.subject.MESHCell Proliferation-
dc.subject.MESHElectrochemistry*-
dc.subject.MESHHumans-
dc.subject.MESHMesenchymal Stem Cells / cytology*-
dc.subject.MESHMesenchymal Stem Cells / drug effects-
dc.subject.MESHMesenchymal Stem Cells / metabolism-
dc.subject.MESHNanotechnology*-
dc.subject.MESHNanotubes / chemistry-
dc.subject.MESHNanotubes / ultrastructure-
dc.subject.MESHOsteocalcin / metabolism-
dc.subject.MESHOsteogenesis* / drug effects-
dc.subject.MESHSurface Properties-
dc.subject.MESHTitanium / pharmacology*-
dc.titleEnhanced osteogenic differentiation of human mesenchymal stem cells on Ti surfaces with electrochemical nanopattern formation-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Medical Engineering (의학공학교실)-
dc.contributor.googleauthorYong Cheol Shin-
dc.contributor.googleauthorKang-Mi Pang-
dc.contributor.googleauthorDong-Wook Han-
dc.contributor.googleauthorKyeong-Hee Lee-
dc.contributor.googleauthorYoon-Cheol Ha-
dc.contributor.googleauthorJun-Woo Park-
dc.contributor.googleauthorBongju Kim-
dc.contributor.googleauthorDoohun Kim-
dc.contributor.googleauthorJong-Ho Lee-
dc.identifier.doi10.1016/j.msec.2019.02.039-
dc.contributor.localIdA05832-
dc.relation.journalcodeJ02186-
dc.identifier.eissn0928-4931-
dc.identifier.pmid30889651-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S092849311833279X-
dc.subject.keywordTitanium-
dc.subject.keywordNanotube-
dc.subject.keywordElectrochemical nanopattem formation-
dc.subject.keywordOsteogenic differentiation-
dc.subject.keywordSurface treatment-
dc.contributor.alternativeNameShin, Yong Cheol-
dc.contributor.affiliatedAuthor신용철-
dc.citation.volume99-
dc.citation.startPage1174-
dc.citation.endPage1181-
dc.identifier.bibliographicCitationMATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, Vol.99 : 1174-1181, 2019-06-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Medical Engineering (의학공학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.