56 63

Cited 0 times in

Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids

 Ann-Na Cho  ;  Yoonhee Jin  ;  Yeonjoo An  ;  Jin Kim  ;  Yi Sun Choi  ;  Jung Seung Lee  ;  Junghoon Kim  ;  Won-Young Choi  ;  Dong-Jun Koo  ;  Weonjin Yu  ;  Gyeong-Eon Chang  ;  Dong-Yoon Kim  ;  Sung-Hyun Jo  ;  Jihun Kim  ;  Sung-Yon Kim  ;  Yun-Gon Kim  ;  Ju Young Kim  ;  Nakwon Choi  ;  Eunji Cheong  ;  Young-Joon Kim  ;  Hyunsoo Shawn Je  ;  Hoon-Chul Kang  ;  Seung-Woo Cho 
 NATURE COMMUNICATIONS, Vol.12(1) : 4730, 2021-08 
Journal Title
Issue Date
Animals ; Brain / cytology ; Brain / growth & development* ; Brain / physiology* ; Culture Media ; Electrophysiological Phenomena ; Extracellular Matrix / physiology ; Feasibility Studies ; Gene Expression Profiling ; Humans ; Hydrogels ; Induced Pluripotent Stem Cells / cytology ; Induced Pluripotent Stem Cells / physiology ; Lab-On-A-Chip Devices* ; Models, Anatomic ; Models, Neurological ; Neurogenesis / genetics ; Neurogenesis / physiology* ; Neuroglia / cytology ; Neuroglia / physiology ; Organ Culture Techniques / instrumentation ; Organ Culture Techniques / methods ; Organoids / cytology ; Organoids / growth & development* ; Organoids / physiology* ; Swine
Brain organoids derived from human pluripotent stem cells provide a highly valuable in vitro model to recapitulate human brain development and neurological diseases. However, the current systems for brain organoid culture require further improvement for the reliable production of high-quality organoids. Here, we demonstrate two engineering elements to improve human brain organoid culture, (1) a human brain extracellular matrix to provide brain-specific cues and (2) a microfluidic device with periodic flow to improve the survival and reduce the variability of organoids. A three-dimensional culture modified with brain extracellular matrix significantly enhanced neurogenesis in developing brain organoids from human induced pluripotent stem cells. Cortical layer development, volumetric augmentation, and electrophysiological function of human brain organoids were further improved in a reproducible manner by dynamic culture in microfluidic chamber devices. Our engineering concept of reconstituting brain-mimetic microenvironments facilitates the development of a reliable culture platform for brain organoids, enabling effective modeling and drug development for human brain diseases.
Files in This Item:
T202103764.pdf Download
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Pediatrics (소아과학교실) > 1. Journal Papers
Yonsei Authors
Kang, Hoon Chul(강훈철) ORCID logo https://orcid.org/0000-0002-3659-8847
사서에게 알리기


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.